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Abstract 
 
The use of convex polyhedrons as basis of finite elements is enabled by the 
definition of a local coordinate system called the natural element coordinates [2]. 
With natural coordinates the formulation of interpolation and test functions is 
geometrically independent. In the case of finite element approximation it is 
necessary to differentiate and integrate these interpolation functions. In the paper 
especially the properties of the natural element coordinates are considered. The 
methods of the numeric implementation are introduced and advantages and 
disadvantages are described. 
 
Keywords: convex polyhedrons, natural element coordinates, quadrature formulas. 
 
 
1  Introduction 
 
The numerical simulation of physical processes in science, nature and engineering is 
part of numerous engineering applications and constitutes the fundament of 
engineering decisions. Often the mathematical description of the physical model is 
based on partial differential equations. The analytical solution of these equations is 
predominantly not or only with extensive complexity computable. The use of 
numerical approximation procedures provides a tool to calculate an approximated 
solution for these equations. 

The finite element method is such a numerical approximation procedure and 
allows an interpolation of given values or a numerical approximation of solutions of 
partial differential equations. The basis of the finite element method is the 
formulation of eligible finite elements and element decompositions. The considered 
investigation area is decomposed in subregions. As geometric fundament for the 
decomposition triangles and quadrangles in the plane as well as tetra- and 
hexahedrons in a three dimensional space are used. In addition to the geometrical 
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fundament finite elements have a set of interpolation functions and a set of degrees 
of freedom. 

The extension of the geometrical fundament to any n-dimensional convex 
polyhedrons permits an easy and flexible decomposition of the investigation area. 
The definition of a local coordinate system called the natural element coordinates 
makes a description of interpolation functions possible. 
 
2  Geometrical Basis 

The geometrical basis of the traditional finite element method is build with edges in 
a one dimensional space, with triangles and quadrangles in the plane as well as with 
tetra- and hexahedrons in a three dimensional Euclidian space. The extension to 
convex polyhedrons can be understood as a generalisation of the geometrical 
elements and the finite element method. 

2.1 Convex Polyhedrons 

The description and definition of convex polyhedrons Z can be done by several 
ways.  

As construction basis for instructions and algorithms it is mostly adequate to 
define a convex polyhedron with reference points of the convex hull 

},...,,{ 21 NeeeE =  [1]. The set of vertices E can be visualised as an intersection of 
half spaces concerning a default set of reference points },...,,{ 21 NpppP = . 
 

 
Figure 1: Half space, intersection of half spaces, convex polyhedron 

 

As basis for finite elements a convex polyhedron can be defined conveniently via 
the Minkowsky-product: 
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The dimension m of the convex polyhedron is defined by the number of m 
linearly independent points in the set of the vertices E. The m-dimensional convex 
polyhedron is composed by a finite set of regions. Every region itself is a convex 
polyhedron, too. The 0-dimensional regions are called vertices, the 1-dimensional 
regions edges an the (m-1)-dimensional regions facets.  
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For the use of convex polyhedrons as a basis for finite elements a uniform 
description of all points of the finite element is necessary. This is achieved with the 
implementation of the natural element coordinates. 

2.2 Natural Element Coordinates 

The definition of a convex polyhedron Z via the Minkowsky product defined by the 
vertices E allows a description of local coordinates with the coefficients iλ  of the 
linear combination. A m-dimensional convex polyhedron with m+1 linearly 
independent vertices gets unique coefficients, known as barycentric coordinates. 

If more than m+1 vertices exists the coefficients are not unique. A modification 
on natural environment coordinates of Sibson [6] achieved natural element 
coordinates which are in relationship with vertices of the convex polyhedron. 

 

 
Figure 2: Natural element coordinates on convex polyhedrons 

 
 

To assess natural element coordinates for a point x the Voronoi decomposition of 
first order is computed according to the vertices ie  of the convex polyhedron. Every 
vertex can be assigned to a Voronoi region )( ieR . A Voronoi region in terms of a 
vertex is the set of all points where the distance d to the vertex is less than or equal 
the distance to all other vertices in E. 

},),(),(:{:)( ijeeepdepdpeR jijini ≠∧Ε∈∀≤ℜ∈=  

A Voronoi region )(xR of first order of a point x of the convex polyhedron can be 
expressed as follows: 

}),(),(:{:)( Ε∈∀≤ℜ∈= iin eepdxpdpxR  
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Additionally, the Voronoi regions of second order are computed according to the 
vertices of the convex polyhedron and the point x. A Voronoi region of second order 
in terms of point x and vertex ie  is the set of all points where the distance d from 
point x is less than or equal the distance to each vertices ie  and where the distance d 
to this vertex is less than or equal the distance to the vertices je . 

 
},),(),(),(:{:),( ijeeepdepdxpdpexR jijini ≠∧Ε∈∀≤≤ℜ∈=  

 

A Lebesgue measure ))(( ieRµ  and )),(( iexRµ  can be computed for Voronoi 
regions of first and second order. In the 2-dimensional space the value µ can be 
interpreted as area of the region. 

 

 
Figure 3: Computation of natural element coordinates 

The natural element coordinates iλ  can be computed as the ratio of the Lebesgue 
measure of the Voronoi regions ),( iexR  and )(xR . 
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The natural element coordinate is undefined if point x lies outside the convex 
polyhedron.  
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Furthermore, if a point x is located on a facet of the convex polyhedron the 
measure of the Voronoi regions of second order become infinite. In this case the 
natural element coordinates depend only on the vertices of the facet. 

 
Figure 4: Computation of  natural element coordinates on a facet 

With the use of the Voronoi regions of second order the natural element coordinates 
do not necessarily depend on all vertices of the convex polyhedron. The coordinates 
of those vertices without influence become zero. 

 
Figure 5: Effect of natural element coordinates 

The natural element coordinates can be understood as generalised barycentric 
coordinates. The extension of convex polyhedrons to parametric cells [3] allows to 
handle curved borders. 
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3  Finite Elements 

A finite element FE  can be understood as a triple consisting of a geometrical basis 
GE  , a set of degrees of freedom Θ  and a set of interpolation functions Φ . 

),,(: ΦΘ= GEFE   

The complete description of complex problems will be realised with a set of 
simple interpolation functions with unknown parameters for subregions (finite 
elements) of an element decomposition. The solution of a differential equation can 
be approximated with the solution of corresponding algebraic system of equations. 
A degree of freedom is normally composed of a point (element of the geometrical 
basis), an interpolation function and a value. The corresponding interpolation 
function is described by natural element coordinates of the geometrical basis and  
the value of one is assigned to the corresponding degree of freedom. 

3.1 Interpolation Functions 

The computation of an approximated solution hu  of an exact solution u  of any 
partial differential equation can be achieved via the linear combination of the 
interpolation functions. Generally, the variable iu  is a placeholder for the values of 
the degrees of freedom. 
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A simple formulation of interpolation functions is defined on the edges of the 
convex polyhedron [4]. In the following, Lagrangian functions will be considered 
and defined in natural element coordinates of the convex polyhedron. Due to edge-
linear considerations the interpolation function is based exclusively on natural 
element coordinates of the associated vertices. 
 

 

 
 

 
11 :)( λλ =Φ  

22 :)( λλ =Φ  

33 :)( λλ =Φ  

44 :)( λλ =Φ  

55 :)( λλ =Φ  

Figure 6: Edge-linear Lagrangian function 
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For edge-quadratic considerations a new degree of freedom is introduced in 
middle of the edges. Within the formulation of interpolation functions at the vertices 
those middle degrees of freedom are considered half on each incident edge. For the 
interpolation functions at these nodes the vertices and a coefficient are considered. 

 

 
151211 2/12/1:)( Φ−Φ−=Φ λλ  

122322 2/12/1:)( Φ−Φ−=Φ λλ  

233433 2/12/1:)( Φ−Φ−=Φ λλ  

344544 2/12/1:)( Φ−Φ−=Φ λλ  

451555 2/12/1:)( Φ−Φ−=Φ λλ  
 

2112 4:)( λλλ =Φ  

3223 4:)( λλλ =Φ  

4334 4:)( λλλ =Φ  

5445 4:)( λλλ =Φ  

5115 4:)( λλλ =Φ  

Figure 7: Edge-quadratic Lagrangian function 

The considered interpolation functions allow a 0c -continuous interpolation on 
decompositions consisting of polyhedrons and parametric cells. 
 
 
4  Numerical Integration 

Within the approximation of partial differential equations based on finite elements it 
is possible to generate integral equations whose integrals generally are not analytical 
computable. 

Methods for numerical integration also referred as quadrature are essential for 
the numerical solution of differential equations. The main problem is the 
computation of the integral 

∫
Ω

Ωdxf )(  

 

over a region Ω . Depending on the used method the complexity of the numerical 
integration is variable. The methods are defined on given integration regions. The 
integration of any functions over an integration region (finite element) are the basis 
of finite element interpolation and approximation methods [5]. 
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4.1 Riemann Integral 

The concept of the Riemann integral is to compute the integral of a function defined 
over a complex region via an approximation of the complex region by easier 
subregions and local function values. Easier subregions are intervals in the 1-
dimensional case, rectangles in the 2-dimensional case, cuboids in the 3-dimensional 
case and “n-dimensional” cuboids in the n-dimensional case. 

In the 1-dimensional case a function is defined by ℜ→ℜ⊂],[: baf . A set of 
points of an interval [a , b] with bxxxxa NN =<<<= +121 ...  can referred as a 
decomposition },,...,,{: 121 += NxxxZ . The decomposition Z and the function f 
enables to compute a lower- and upper sum as follows: 
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The combined limit R for x∆ towards zero named as Riemann integral 
 

∫=
b

a

dxxfR )(  with ),(),(: fZOfZUR == . 

A Function is called Riemann-integrable if the combined limit above exists. 
 

In the n-dimensional case a scalar function over a “n-dimensional” cuboid is 
defined by ℜ→ℜ⊂ nbaf ],[: . The design of the cuboid B can be realised via 
intervals on the N-axes ],[...],[ 11 NN babaB ××= . The partition of intervals in 
subintervals 
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allows the definition of subcuboids as follows: 
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The distance between the single subintervals can be variegate. The set of all 
subcuboids qS  build the cuboid B. The lower- and upper sum can be computed as 
follows: 

∑
∈ ∈

⋅=
qnllsub nllsubsub

n
SB BB

subllsub BfBvolfBU
,...,1 ,...,1 
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4.2 Numerical Integration via Refinement 

The definition of the Riemann integral shows a possible numerical approximation. 
With a gradually refinement of the subregions the accuracy level of the 
approximation can be increased. 
 

 
Figure 8: Different refinement methods for triangles (simplexes) 

The right choice of geometrical shape for these subregions allows both the exacting 
boundary description of the convex polyhedron and further refinements. The 
description of subregions via simplexes has proved to be advantageous. 
 

 
Figure 9: Integration on a hexagon via prisms 

According to the definition of Riemann integral the approximated solution relating 
to an adequate level of refinement will present the solution of reference. 
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4.3 Quadrature Formulas 

According to the geometry, the quadrature is interpreted as a graphical meta–
morphosis of surfaces to coextensive squares. Regarding the mathematics, the 
quadrature is interpreted as a computation of surfaces via integral calculus. The 
numerical quadrature enabled an approximated computation of Riemann integrals. 

 

∫
b

a

dxxf )(  

 
The introduction of the numerical quadrature is shown below. An extension to 

the n-dimensional case is possible in an analogue way. At first simple considerations 
specify a polynomial or a piecewise polynomial approximation function of f. 
Afterwards, the integral of the polynomial or the spline can be computed exactly. In 
addition to simple considerations more effective methods and possibilities for error 
estimation and failure recording exists. 

For an approximated computation of Riemann integrals via the quadrature the 
quadrature formula Q  
 

∑
=

+ =
N

j

N
j

N
j

NN
N xfwxwfQ

0

)()()()(
1 )(),;(  

is used. The coefficients )(N
jw  describe the weights and the coefficients )( N

jx  
describe the supporting points with Nj ,...,0= . A sequence of such quadrature 
formulas define a quadrature method. 

An error estimation makes an introduction of an quadrature error R necessary. 
The term R allows to give statements about convergence criterions of quadrature 
methods. 
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The formulation of the quadrature formula depends on the choice of supporting 
points and whose weights.  

Newton-Cotes ascertaines the weights on given supporting points, Chebyshev 
computes the supporting points on given weights and Gauss calculates both 
supporting points and weights. 
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4.3.1  Newton-Cotes Formulas 

The concept of Newton-Cotes formulas is to find an approximated interpolation 
polynomial P for the supporting points and afterwards an exact integration of P. The 
description of P effected by Lagrange polynomials. 
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The integral can be described as follows: 

∑ ∫∫
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b

a

dxxLxfdxxP
0

)()()(         (1) 

The supporting points )( abtax j −+=  on an interval [a , b] can be predetermined 
with optional values. The parameter t allows a consideration of the ends of an 
interval. 
 

Parameter t Interval  Name 

Nj
N
jt ,...,0  , ==  interval is included Newton-Cotes formulas 

of the closed type 

Nj
N
jt ,...,0  ,

2
1

=
+
+

=  interval is not included Newton-Cotes formulas 
of the open type 

The computation of the integral is described via a sum as follows: 
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A formula to compute the weights )(N
jw  can be obtained by equate (1) and (2) as 

follows: 

∫−
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If it is difficult to integrate boundary points, Newton-Cotes formulas of the open 

type are used. For Newton-Cotes formulas of the closed type ( 8≥N ) and for the 
open type ( 2≥N ) alternating algebraic signs occur on the weights. The alternating 
algebraic signs are the reason for rounding errors. Therefore Newton-Cotes formulas 
are used only for small N on fragmented intervals of [a , b]. 
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4.3.2  Gauss Quadrature 

Until now, numerical integration formulas have been considered to determine 
suitable weights on given supporting points. Instead of this, the Gauss quadrature 
tries to determine both supporting points and weights optimal. The choice of a 
nonnegative weight function )(xλ  on an interval [a , b] allows to extend an 
integration on infinite integration intervals. 

)()()( )(
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The weights jw  already include the coefficient )( ab −  of Newton-Cotes formulas. 
In the literature can be found following weight functions: 

 

Interval [a , b] Weight Function )(xλ Rules

]1,1[− 1 Gauss-Legendre

]1,1[− 2/12 )1( −− x Gauss-Chebyshev

]1,1[− 1)1()1( −>+− βαβα xx Gauss-Jacobi

],0[ ∞ )exp( x− Gauss-Laguerre

],[ ∞−∞ )exp( 2x− Gauss-Hermite

Analogue to the Newton-Cotes formulas, the weights defined by Lagrange 
polynomial can be computed: 

∫=
b

a
j

N
j dxxLxw )()()( λ  

Legendre polynomials are the result of a chosen weight function 1)( =xλ  on an 
interval [-1,1]. The dedicated integration formula is called Gauss-Legendre rule and 
can be used like a composed formula such as Newton-Cotes formulas. In the 1-
dimensional space Gaussian points can be computed on the edges. 
 

Gaussian Points [-1,1] i Supporting Points )( N
jx Weights )( N

jw

1 1 0 2 

             1                   2 1 
2

-0.577350269189626 
0.577350269189626

1 
1
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An extension of Gauss quadrature for the n-dimensional space is enabled by the 1-
dimensional Gaussian points. In the literature the Gaussian points are given for 
triangles and quadrangles in the 2-dimensional space and tetra- and hexahedrons in 
the 3-dimensional space. 

4.3.3  Implementation on Convex Polyhedrons 

On basis of known polyhedrons in the broader named as quadrature polyhedrons the 
computation of supporting points on an interval [a , b] is enabled. Quadrature 
polyhedrons are edges in the 1-dimensional, triangles or quadrangles in the 2-
dimensional and tetra- or hexahedrons in the 3-dimensional space. 

Therefore to use quadrature formulas a decomposition of the convex poly-
hedrons in quadrature polyhedrons is necessary.  

 
Figure 10: Decomposition of a hexagon in quadrangles 

An integration over the convex polyhedron E  can be conceive as sum of all sub-
regions iE . 

∫ ∑ ∫
Ω Ω

Ω=Ω
E i iEE

dfdf )()( λλ  

In order to sum up all subregions, the function value on supporting points 
regarding the convex polyhedron must be computed at first. This makes a trans-
formation of the convex polyhedron to a unit polyhedron necessary. 

 
Figure 11: Transformation of a unit polyhedron to the convex polyhedron 
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The transformation accomplished via Jacobian matrix. The Jacobian matrix 
allows to establish a relationship between the locale coordinates r  of the unit 
polyhedron and the locale coordinates λ  of the convex polyhedron. The integration 
over the convex polyhedron can be computed as follows: 
 

∑∑∫ ∑ ∫
=Ω Ω

=Ω=Ω
iE i iE E

N

j
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fwdfdf
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The numerical integration via classical quadrature formulas is exact for polynomials. 
In contrast to this the natural element coordinates are rational functions. Therefore a 
better approximation of integrals will be enforce as well as a reduction of the 
approximation error. 
 
5 Conclusion 
 
The fundamentals for the formulation of a finite element on arbitrary convex 
polyhedrons were created. Furthermore, investigations should be the extension of 
the geometry of the convex finite cells by using shape functions as it is common on 
parametric elements. This will then lead to the description of even warped lined or 
warped planed elements. Regarding the interpolation thoughts must be done about 
possibilities to optimize the differentiation and the integration. The extended finite 
element method allows a better solution for a description of complex engineering 
problems. 
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