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Summary 

In engineering and computing, the finite element approximation is one of the most well-known 
computational solution techniques. It is a great tool to find solutions for mechanic, fluid 
mechanic and ecological problems. Whoever works with the finite element method will need to 
solve a large system of linear equations. There are different ways to find a solution. One way is 
to use a matrix decomposition technique such as LU or QR. The other possibility is to use an 
iterative solution algorithm like Conjugate Gradients, Gauß-Seidel, Multigrid Methods, etc. 
This paper will focus on iterative solvers and the needed storage techniques. 

The Institute of Computer Science in Civil Engineering of the University of Hannover, 
Germany has developed a finite element method based on general cells. The paper will give a 
short introduction to these cells. This results in general in a finite element mesh which contains 
a lot of differently shaped cells. Each node is typically connected to three other nodes, and leads 
to the idea to use band matrices. Band matrices are a special form of sparse matrices. The paper 
will show that band structure is not needed for this kind of Problem.  

There is a new flexibility on our cells, but efficient solvers of the linear equations are 
recommended. The information of the problem needs to be stored in matrices. The computing 
power has increased very rapidly over the last years, but even today the limits are reached very 
fast when wrong or ineffective algorithms are used. In the future, we expect more and more time 
intensive operation will be done on parallel computers. The paper will end with an case study of 
the shallow water equation. 

1 Introduction 

Civil engineers need numerical methods to compute complex building structures, the 
automobile industry use simulation modells to design new cars and crash tests, and in fluid 
mechanics the simulation of transportation problems support a better understanding of natural 
processes. Engineering problems like these can be described with partial differential equations 
(PDE). Unfortunately, only in rare cases an analytic solution of these PDEs exists. This is why 
numeric methods are used to generate an approximate solution. Typical numeric methods are 
the Finite Element Method (FEM), the Finite Volume Method (FVM), and the Finite 
Differential Method (FDM) [Ka04]. An essential task of these numeric methods is to solve large 
algebraic systems of equations with thousands of rows and columns. 

At the Institute of Computer Science in Civil Engineering of the University in Hannover, 
Germany a new method was developed, which differs significantly from the common FEM. The 
finite elements used in this new method are not necessarily triangles or quadrangles. Any 
convex, non convex, or parametric cell is a possible basis for the finite elements. This is new 
and leads to the question of what kind of matrix will arise form these new finite elements and 
decompositions. They may be band structured or sparse. 
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A matrix A  of the order n  is said to be sparse if it contains a small number of nonzero 
elements compared to its size. This paper will show how to develop the matrix A  using FEM 
and how the resulting linear system of the following form can be solved. 

   Ax b=  

Sparse systems arise in many contexts – fluid dynamics, structural engineering, linear 
programming, economic models, and electrical circuits, just to name a few. In the last two 
decades much research was done on sparse systems. This paper will give an overview over what 
can be done very easily without knowing too much of the material but be sensible enough to use 
the right black box. The simplest way for decomposition we know is the LU  decomposition. 
The LU decomposition is done with an effort proportional to 3n . In this case the matrix A is 
written as follows: 

   A LU=  

L  is lower and U is upper triangular. The system Ax b=  can then be solved in two stages 

   1. Ly b=  

   2. Ux y=  

Since L  and U are triangular, the system can be solved efficiently by standard algorithms. Two 
problems arise when using this kind of decomposition. For large algebraic systems of equations 
computation time and storage space are critical.  

For example, if it takes 10 seconds to compute an equation with 1.000 unknowns it will last 
2,77 hours to compute an equation with 10.000 unknowns. This ratio shows that the method is 
not very effective. Hence, other ways to solve this equation have to be found. Possible 
algorithms will be shown in section 3.  

The FEM matrices used by the Institute of Computer Science in Civil Engineering of the 
University in Hannover, Germany are often very large. Matrices with over 100.000 unknowns 
are not unusual. If such a matrix was dense 10.000.000.000 floting point numbers would have to 
be stored. To compute these matrices they would have to be stored on physical storage medium. 
A matrix of the order 10.000 requires eight hundred megabytes, which is not typical for a 
personal computer or workstation. Thus, the size of the matrices would be a problem. Therefore, 
we use sparse matrix storage techniques to reduce memory space and computing time 
significantly. How and why this is possible will be shown in the following section 4. 

2 Building the matrices using the FEM 

Everything begins with the problem which is to be solved. Regularly, this is a PDE (Partial 
Differential Equation) of the following form 

   U f∆ = . 

This PDE is fulfilled within the domain of investigation Ω . It describes a function ( )U x
G

, 
which is unknown and a known function f  on the right side. The solution is defined in 
continuous space. The Finite Element Method (FEM) transforms the problem to a discrete 
space. To find an approximation iU  for the unknown solution U  it is assumed that iU  has the 
following form 

   i
1

( ) ( )
n

i i
i

U x u xφ
=

≅ ⋅∑
G G
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The continuous area is split in finite elements. All nodes of this area have a value iu , which is 
unknown. They are connected with a basic function ( )i xφ

G
, which is known, because it can be 

chosen by the developer of the FEM. After a few transformation steps [Pi02] the linear equation 
has the following form: 

   
( ) ( )1 1t t t

k k kk kM c M K D c
t t

+∆ ⎛ ⎞= −⎜ ⎟∆ ∆⎝ ⎠

G G
 

   ( ) ( )

k

ij k i k jm dφ φ
Ω

= Ω∫  ( ) ( ) ( ) ( )

k k

k i k j k i k j
ijd d d

x x y y
φ φ φ φ

=
Ω Ω

∂ ∂
Ω + Ω

∂ ∂ ∂ ∂∫ ∫  

For each node chosen to represent the area the matrix gets one row and one column, therefore a 
quadratic matrix is build. It can be shown that the matrix is symmetric and positive definite. 

2.1 Element forms 
The geometric basis of our finite elements are convex, non convex, or parametric polytrope 
cells. They do not need to be triangles or quadrangles. The decomposition can be formed 
through n- dimensional convex cells, which are described by their nodes. Two nodes build the 
facet for the 2- dimensional elements and on average one node is connected to 3.08 other nodes. 
Entries in the column n of the matrix A are generated for each node, which belongs to an 
element connected to nE . The reason for the complexity of how to get a band matrix can be 
shown here. The numbering of the nodes is chosen by the developer. The problem is that only 
with the optimal numbering you get the optimal band matrix; otherwise it is just a sparse matrix. 
It is important for the band matrix that the range between all nodes connected with other nodes 
(via the elements) is short for all nodes. An algorithm to build a band matrix through 
renumbering is very extensive. This paper will show that it is not necessary to do so if an 
iterative solver is used. 

2.2 Nonzero numbers in the matrix from FEM 
As an example following PDE U f=+  is given the on the domain Ω  in particular 2\ . In 
most cases an analytic solution does not exit. The equation for this example, which has to be 
solved, has the following form: 

  
( ) ( ) ( )2 2

2 2

, , , , , ,c x y t c x y t c x y t
K

t x y
⎛ ⎞∂ ∂ ∂

= +⎜ ⎟∂ ∂ ∂⎝ ⎠
 

The equation describes the diffusive flow of a 
concentration c  within a fluid over time. This is the 
simplest model concept possible, because no advection 
is present. Transportation of the concentration is done 
through the Brownian movement (which exists wherever 
temperature is above zero Kelvin). The basis functions 
are constructed in a way that they are nonzero only in 
the elements to which they belong.  

The picture shows a selected area of the domain 2\ . It 
is just a short part of the whole net and shows all 
elements connected to the node 8. Around this part are 
arbitrary more elements. In this case four elements are 
connected to centre node 8. As described above each 
node has its own basis function. The basis functions are 
equal to one at the nodes to which they belong and zero 
on all other nodes. The basis function is nonzero within 
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the connected elements kE . In this case the basis function 8 ( )xφ
G

 is nonzero within the 
elements 1E , 2E , 3E  and 4E . 

 

In these pictures you can see the basis function for node 8 and the basis function for node 5. 
You got an entry in the matrix A at row 8 column 5, because both function are defined in 
element 2E  and therefore the integral of the product of these function is nonzero. 

3 Algorithms to solve sparse linear systems 

Heimsund [Hei04] developed a Sparse Matrix Collection. The Sparse Matrix Collection offers 
general, unstructured sparse matrices with iterative solvers and preconditioners. It provides 
algorithms for solving large matrix problems arising from PDE problems. It features iterative 
solvers from Templates [Tem94]. These include 

  - Conjugate Gradients 

  - Generalized Minimal Residuals (GMRES), restarted version 

  - Bi Conjugate Gradients 

  - Quasi Minimal Residuals 

  - Conjugate Gradients Squared 

  - Bi Conjugate Gradients Stabilized 

  - Chebyshev 

All these solvers are nonstationary iterative methods. They differ from stationary iterativ solvers 
like Jakobi, Gauß Seidel, SOR, and SSOR since the computations involve information which 
changes at each iteration. Typically, constants are computed by taking inner products of 
residuals or other vectors arising from the iterative method. The solvers used in the Sparse 
Matrix Collection are best discribed in [Tem94] and will be discussed in the following 
subsection. 

3.1 Conjugate Gradient Methode 

The Conjugate Gradient method (CG) derives its name from the fact that it generates a sequence 
of conjugate or orthogonal vectors. These vectors are the residuals of the iterates. They are also 
the gradients of a quadratic functional, the minimization of which is equivalent to solving the 
linear system. CG is an extremely effective method if the coefficient matrix is symmetric 
positive definite since storage for only a limited number of vectors is required. 
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3.2 Minimal Residuals (MINRES) 
The Minimal Residuals method (MINRES) is a computation alternative for CG. It is used for 
coefficient matrices which are symmetric but possible indefinite. It will generate the same 
solution as CG if the coefficient matrix is symmetric positive definite. 

3.3 GEMRES 
The Generalized Minimal Residual method (GEMRES) computes a sequence of orthogonal 
vectors (like MINRES) and combines these through a least-squares solve and update. However, 
unlike MINRES (and CG) it requires storing the whole sequence, so that a large amount of 
storage is needed. For this reason, restarted versions of this method are used. In restarted 
versions, computation and storage costs are limited by specifying a fixed number of vectors to 
be generated. This method is useful for general non symmetric matrices. 

3.4 BiConjugate Gradient 
The Conjugate Gradient method is not suitable for non symmetric systems because the residual 
vectors cannot be made orthogonal with short recurrences. The GMRES method retrains 
orthogonality of the residuals by using long recurrences, at the cost of a larger storage demand. 
The BiConjugate Gradient method (BiCG) takes another approach, replacing the orthogonal 
sequence of residuals by two mutually orthogonal sequences, at the price of no longer providing 
a minimization.  

3.5 Quasi Minimal Residual (QMR) 
The Quasi-Minimal Residual method (QMR) applies a least-squares solve and update to the 
BiCG residuals, thereby smoothing out the irregular convergence behaviour of BiCG, which 
may lead to more reliable approximations. In full glory, it has a look ahead strategy built in, 
which avoids the BiCG breakdown. Even without look ahead, QMR largely avoids breakdowns, 
which can occur in BiCG. On the other hand, it does not effect a true minimization of either the 
error or the residual, and while it converges smoothly, it often does not improve on the BiCG in 
terms of the number of iterations steps. 

3.6 CGS 
The Conjugate Gradient Squared method is a variant of BiCG, that applies the updating 
operations for the A-sequence and the TA -sequence both to the same vectors. Ideally, this 
would double the convergence rate, but in practise convergence may be much more irregular 
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than for BiCG. Sometimes, this may lead to unreliable results. A practical advantage of the 
method is that it does not need the multiplications with the transpose of the coefficient matrix. 

3.7 BiCG-stab 
The BiConjugate Gradient Stabilized method (BiCG-stab) is a variant of BiCG, like CGS, but 
using different updates for the TA -sequence in order to obtain smoother convergence than 
CGS. 

3.8 Chebyshev Iteration 
The Chebyshev Iteration recursively determines polynomial with coefficients chosen to 
minimize the norm of the residual in a min-max sense. The coefficient matrix must be positive 
definite and knowledge of the extremal eigenwert is required. This method has the advantage of 
requiring no inner product. 

These methods provide a lot of iterative solvers, which can be used to solve linear systems. 
Since our matrices arise from FEM and are in most cases regular positive definite or at least 
symmetric most of these methods can be used. BiCG-stab is a bit slower than the other 
computation methods but it is the most reliable. 

4 Concept of matrix storage 

The aim of a Sparse Matrix package is to achieve a better performance. One way to realize this 
is to use a fast solver. The other important impact on performance is caused by the storage 
technique. There are several possibilities to store a matrix. The key is not to store unnecessary 
data. Each technique has its advantages and disadvantages. The easiest possible storage scheme 
records all values in a row. If it is known that the matrix is symmetric no more information is 
needed. For dense matrices this is the best technique. For sparse matrix it is not, because all zero 
numbers would be stored and thus consume the short-handed storage medium. 

Dense matrix storage increases quadratic with the numbers of nodes This is because for each 
node chosen to represent the area, the matrix grows by one row and one column. An example: 
an area represented by 1000 nodes needs a matrix for which 1.000.000 double values have to be 
stored. This is the point where the first huge increasing factor can be found, because storage 
medium increases linear with sparse matrix storage techniques (number of nodes multiplied 
with average nonzero numbers per row). The question is how this can be done most 
economically. 

Special forms of sparse storage techniques are band storage or skyline techniques. The 
disadvantages of these techniques are that within the band zeros will be stored. A special 
numbering for these nodes is needed to find an optimal or near optimal solution to keep the 
band of the matrix short. But an optimal numbering is a complex and time intensive operation. 
An advantage is that there is only a fill in within the band while building the inverse. 

4.1 Row oriented sparse matrix storage 

Sparse matrix storage can be done with tree vectors. Using the row oriented method the first 
vector (data vector) is filled with all non zero values |g|, beginning with the fist row’s first entry 
and ending the last row’s last entry (n rows). With this kind of storage all information of the 
position in the matrix is lost. To keep them you need two more vectors. The second vector has 
the same size as the first vector and is filled with the number of the column from the associated 
value (column indices). The third vector is smaller; its size is the number of rows plus one (row 
pointer). It gives the information at which positions in Vector one (two) the rows begin. 
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10 0 0 0 2
3 9 0 0 9

A 0 7 8 7 0
3 0 8 7 5
0 8 0 9 9

−⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 

  
Data 10 -2 3 9 9 7 8 7 3 8 7 5 8 9 9
Column Indices 0 4 0 1 4 1 2 3 0 2 3 4 1 3 4  

  Row Pointer 0 2 5 8 12 15  
 

There are  

   2*g n 1+ +  

values to be stored. Clearly, it is not an effective method if the matrix is filled with nonzero 
variables.  

   2*n *n n 1+ +  

In this case more than twice the storage medium is needed. But storage medium will be saved if 
the following condition is fulfilled: 

   22*g n 1 n+ + < . 

This is the basis for sparse matrix storage. In this way the medium needed is reduced to a 
minimum. To solve the linear equation an algorithm is needed with an optimal usage of the 
storage medium and high effectiveness in computing.  

4.2 Column oriented sparse matrix storage 
The column oriented sparse matrix storage is also based on three vectors. This time the first 
vector is filled with all non zero values, beginning with the fist column’s first entry and ending 
the last column’s last entry. The second and third vector are filled following the same method as 
above. 

 

  
Data 10 3 3 9 7 8 8 8 7 7 9 -2 9 5 9
Row Indices 0 1 3 1 2 4 2 3 2 3 4 0 1 3 4  

  Column Pointer 0 3 6 8 11 15  
 

The row oriented storage is optimized for the multiplication A x⋅  which is optimal for pre-
multiplication. The column oriented sparse matrix storage is optimized for Tx A⋅  and TA x⋅ , 
because it has a fast column access. If both accesses are regularly used within an algorithm, it 
leads to the idea to store the matrix in two ways. This doubles the memory usage but reduces the 
computing time needed dramatically. These approaches seem to be convenient for the multi grid 
method which is topic of further research. 
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5 Case Study 

This Case Study is based on a FEM example from fluid mechanics. The approximation of the 
instantaneous simplified shallow water equation in a rectangular basin is used as a test case. 

   x x x
x y

U U UU U g
t x y x

η∂ ∂ ∂ ∂
= − − −

∂ ∂ ∂ ∂
 

   y y y
x y

U U U
U U g

t x y x
η∂ ∂ ∂ ∂

= − − −
∂ ∂ ∂ ∂

 

   
( ) ( )yx U hU h

t x y
ηηη ∂ −∂ −∂

= − −
∂ ∂ ∂

 

η  is the instantaneous water surface amplitude, xU and yU  representing the velocities in x- and 
y-direction, h is the mean water depth. 

This example shows [Schw04] a net where water is filled in steadily from the entrance in the 
upper left corner and moves into the lower right corner. Obviously, this net does not consist of 
triangles or quadrangles, but it is a decomposition of any convex polytope cells. The net was 
generated by a voronoi decomposition and voronoi cells are used as the basis for the FEM. 

The numeric approximation was done with stabilized FEM. The structure of the matrix resulting 
from this stabilized method changes marginally. The resulting matrix has the following form. 
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What can be seen here? The matrix for this decomposition of the basin has 15.201 nodes and 
572561 nonzero entries, which is an average of 37.66 entries per row. Why this matrix is 
symmetric was explained above. Significant is the small band on the left side. These are the 
border nodes of the basin. They have the smallest numbers. This was done for reasons of easier 
access to set boundary conditions. These nodes have fewer neighbours than the others. Obvious 
is the fact that there is no band structure, the entries are distributed sparse all over the rows of 
the matrix. Further identification of structures is topic of current research. 

 

 

These pictures show the results of the FEM simulation, which was done with n-dimensional 
convex polytope cells. The computation of the linear system was done with the sparse matrix 
pakage of Heimsund. After 8 minutes a whirl appeared, which moved to the right side (150 
minutes) to build a quasi stationary whirl. The perspective is from above. This is part the current 
research at the Institute of Computer Science in Civil Engineering in Hannover, Germany. 

6 Summary and Outlook 

The paper has shown that, with the right storage technique and the right iterative solver for 
sparse filled matrices efficient and proper solutions are generated. The basis for the new FEM is 
a decomposition of any convex, non convex, or parametric polytrope cells. The matrix resulting 
from this new FEM is sparse and not band structured. A few years ago it was popular to 
generate an optimal numbering to obtain a band matrix, but as this paper has shown, this is not 
necessary. The access via these compact storage techniques is optimal hence there is no zero 
entry used and therefore no unnecessary computation is done. The benefit of the band matrix is 
that its inverse matrix is easily build in comparison with the sparse matrix (fill in). But the 
advantage of the iterative algorithms is that no inverse matrix has to be build. All operations are 
matrix vector products and straight forward.  

The shown iterative solvers for sparse filled matrices were used within the scope of the shallow 
water equation. The new FEM in combination with the iterative sparse solvers build the basis 
for further research. 
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