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Abstract. Fuzzy functions are suitable to deal with uncertainties andfuzziness in a closed form
maintaining the informational content. This paper tries tounderstand, elaborate, and explain
the problem of interpolating crisp and fuzzy data using continuous fuzzy valued functions. Two
main issues are addressed here. The first covers how the fuzziness, induced by the reduction
and deficit of information i.e. the discontinuity of the interpolated points, can be evaluated
considering the used interpolation method and the density of the data. The second issue deals
with the need to differentiate between impreciseness and hence fuzziness only in the interpolated
quantity, impreciseness only in the location of the interpolated points and impreciseness in both
the quantity and the location.

In this paper, a brief background of the concept of fuzzy numbers and of fuzzy functions
is presented. The numerical side of computing with fuzzy numbers is concisely demonstrated.
The problem of fuzzy polynomial interpolation, the interpolation on meshes and mesh free fuzzy
interpolation is investigated. The integration of the previously noted uncertainty into a coherent
fuzzy valued function is discussed. Several sets of artificial and original measured data are used
to examine the mentioned fuzzy interpolations.
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1 INTRODUCTION

Interpolation methods are used to construct idealized realvalued continuous functions from
distributed data. Due to the in reality inevitably point wise discrete and imprecise observations
of the quantity in interest, constructing real valued continuous functions is not adequate to
represent the complete information on the observed data. The fact, that the interpolated data
points are scattered and discrete, causes a reduction of theactual continuous function. This will
necessarily introduce some kind of uncertainty and fuzziness caused by the information deficit.
In the case of inaccurate measurements this fuzziness is genuine. It is thus necessary to consider
this uncertainty and fuzziness in order to get an interpolating function, that incorporates all the
available information.

Fuzzy functions are suitable to deal with the mentioned uncertainties and fuzziness in a
closed form maintaining the informational content. Two main issues must be addressed. The
first covers how the fuzziness, induced by the reduction and deficiency of information i.e. the
discontinuity of the interpolated points, can be evaluatedconsidering the used interpolation
method and the density of the data. The second issue deals with the need to differentiate between
impreciseness and hence fuzziness only in the interpolatedquantity, impreciseness only in the
location of the interpolated points and impreciseness in both the quantity and the location.

In the next section a brief background of the concept of fuzzynumbers and of fuzzy func-
tions is presented. After that in section 3 the numerical side of computing with fuzzy numbers
is concisely demonstrated. The integration of the previously noted uncertainty into a coher-
ent fuzzy valued function is discussed in section 4. In section 5 sets of artificial and original
measured data are used to examine the fuzzy Lagrange polynomial interpolation, the mesh free
fuzzy Shepard interpolation, the fuzzy piecewise linear interpolation and the fuzzy piecewise
bilinear interpolation on a grid.

2 FUZZY NUMBERS AND FUZZY FUNCTIONS

A fuzzy number̃x is a special case of a fuzzy set with specific requirements on the member-
ship functionµ(x). A definition of the fuzzy number is given as follows.

Definition 2.1 (Fuzzy Number) A fuzzy number̃x is a fuzzy set with the membership function
µ(x) : R → [0, 1] that is piecewise continuous such that:

1. For every pairα1 and α2 in [0, 1], wheneverα1 < α2 then R ⊇ Aα1
⊇ Aα2

, with
Aαj

= {x ∈ R : µ(x) > αj} theα-Cut set. This means, the fuzzy set is convex.

2. sup
x∈R

µ(x) = 1. This means, the fuzzy set is normal.

3. There is exactly onex ∈ R with µ(x) = 1 .

The set of all fuzzy numbers ofR is denoted bỹR and called the fuzzy space. A crisp real
numberx ∈ R is regarded as a single tone set

{(ξ, µ(ξ))|ξ ∈ R, µ(ξ) ∈ R → [0, 1]}, (1)

where

µ(ξ) =

{
1 for ξ = x

0 otherwise,
(2)
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which is a fuzzy number. Therefore, the set of crisp real numbersR can be seen as a subset of
R̃ (R ⊂ R̃).

Now the definition of a fuzzy functioñf can be given as follows.

Definition 2.2 (Fuzzy Function) A fuzzy function is a relationship between two subsetsX̃ and
Ỹ of the fuzzy spacẽR that associats each elementx̃ of the first subset̃X with only one element
of the second set̃Y . f̃(x̃) is used to refer to the associated elementỹ = f̃(x̃) of the second set
Ỹ and is called the “fuzzy image of̃x”. This relationship is written as

f̃(x̃) : X̃ → Ỹ : ỹ = f̃(x̃) . (3)

A classical real functionf : R → R is a special case of the fuzzy one, in which the domain and
the range of the function are subsets of the fuzzy spaceR̃ with only single tone fuzzy numbers.
Defining the fuzzy function in an arithmetic sense is accomplished by the extension principle
of Zadeh, which is the subject of the next section.

3 COMPUTING WITH FUZZY NUMBERS

The extension principle, as proposed by Zadeh, is the basic concept providing a method to
extend the arithmetic notion of real functions to fuzzy functions. This allows the definition of
mathematical operations on fuzzy numbers in a similar way asin the real numbers space. The
extension principle is stated as in the following.

Proposition 3.1 (The Extension Principle of ZADEH) LetX1×X2×...×Xn, whereXi ⊆ R

with i = 1, 2, ..., n, be a product set andf a functional mapping of the form

f : X1 × X2 × ... × Xn → Y , (4)

which associates each element(x1, x2, ..., xn) of the product set to one elementy = f(x1, x2, ..., xn)
of the setY ⊆ R. Now, letx̃1, x̃2, ..., x̃n ben fuzzy numbers, defined as

x̃i = {(xi, µexi
(xi))|xi ∈ Xi ⊆ R, µexi

(xi) : Xi → [0, 1]} (5)

with i = 1, 2, ..., n . Then the fuzzy number

ỹ = f̃(x̃1, x̃2, ..., x̃n) = {(y, µey(y))|y ∈ Y ⊆ R, µey(y) : Y → [0, 1]} (6)

is the fuzzy image of(x̃1, x̃2, ..., x̃n) resulting from extending the real functional mappingf to a
fuzzy functional mapping̃f and has the membership functionµey(y) defined by

µey(y) =





sup
y=f(x1,x2,...,xn)

min{µex1
(x1), µex2

(x2), ..., µexn
(xn)} if ∃y = f(x1, x2, ..., xn)

0 otherwise.
(7)

Evaluating the extension principle is a subject of a long anddiversifying discussion, which
will be omitted here in favour of being concise. For more information about the basics of fuzzy
set theory and the arithmetic of fuzzy numbers the references [1] and [2] are recommended.
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4 FUZZY INTERPOLATION

Fuzzy interpolation methods can be understood as procedures for interpolating data with
genuine fuzziness as well as procedures for interpolating crisp and fuzzy data quantifying the
fuzziness induced by information deficiency. In other words, it is distinguished between two
situations. The first situation is the interpolation of fuzzy data, in which the fuzziness is a non
separable part of the sampling points. The second situationis the fuzzy interpolation of either
crisp or fuzzy data quantifying the fuzziness induced by thereduction of the actual state of the
interpolated analytical or empirical function.

Considering a set of crisp data, such that at various pointsxi there is a crisp informationyi

with i = 1, · · · , n, the interpolation of such discrete crisp data in terms of relatively simple
functions is well-grounded. The interpolation methods used are generally based on the simple
form of an interpolating function

f : R → R : f(x) =

n∑

i=1

yi · φi(x) (8)

where the basis functionφi(x) : R → R satisfies the interpolation condition:

φi(xk) =

{
1 for k = i

0 for k 6= i
(9)

A very simple example can be given in fitting a linear functionto two data points(x1, y1) and
(x2, y2), see Figure 3, which are sample values of some function, wether evaluated analytically
or measured empirically.

Figure 1: Basis functionφ1 .

Figure 2: Basis functionφ2 .

The basis functions that build the desired linear function are

φ1(x) :=
x2 − x

x2 − x1
(10)
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and
φ2(x) :=

x − x1

x2 − x1
, (11)

see Figure 1 and Figure 2, and the graph of the linear interpolating function is shown in Figure
3 .

Figure 3: Linear interpolating function.

A general and systematic view of the interpolation methods that quantify the fuzziness in-
duced by interpolating discrete and distributed data and cover interpolating data with genuine
fuzziness is required.

4.1 Genuine fuzziness in the data

Here, the interpolation problem of fuzzy data in the generalcase is stated first. Then three
essential special cases are discussed and demonstrated. The first case is interpolating data with
fuzzy quantities at a crisp locations. The second case is interpolating data with crisp quantities
at fuzzy locations. The third case is interpolating data with fuzzy quantities and fuzzy locations.
At last the general case of interpolating fuzzy data is discussed.

Problem 4.1 (The problem of interpolating data with genuinefuzziness) Let x̃1, · · · , x̃n be
n fuzzy points iñRm. A fuzzy number̃yi in R̃ is associated to each̃xi with i = 1, · · · , n.
The pairs(x̃i, ỹi) ∈ R̃

m × R̃ are pairwise unique. Constructing an interpolating function

f̃ : R̃
m → R̃ mappingR̃

m to R̃ such that:

1. andf̃(x̃i) = ỹi for all i = 1, · · · , n,

2. f̃ : R̃
m → R̃ is a continuous function.

is the problem to be sovled.

In a similar way as in interpolating crisp data the sought function can then take the form

f̃ : R̃
m → R̃ : f̃(x̃) =

n∑

i=1

ỹi · φ̃i(x̃) . (12)

where theφ̃i : R̃
m → R̃ with i = 1, · · · , n are fuzzy functions that satisfy the interpolation

condition

φ̃i(x̃k) =

{
1 for k = i

0 for k 6= i
(13)
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Different ways of defining̃φi(x̃) give different interpolation methods, which will be exam-
ined later on. To simplify matters the one dimensional linear interpolation is considered as an
introductory example in the next four cases.

The generalization of problem 4.1 to cover interpolating functions of the form̃f : R̃
m → R̃

l

mappingR̃
m to R̃

l is straight forward. The fuzzy number̃yi is replaced with a fuzzy point in
R̃

l.

4.1.1 Case 1: Interpolating data with fuzzy quantities at crisp locations.

In the case of interpolating data with fuzzy quantitiesỹi at crisp locationsxi with i = 1, ..., n,
which are sample values of some analytical fuzzy function orof some fuzzy empirically mea-
sured data, the basis functionsφi : R → R with i = 0, ..., n can take the form of real functions
as special cases of the fuzzy functions.

The interpolating functioñf : R → R̃ is given in a general form as

f̃(x) =

n∑

i=1

ỹi · φi(x) . (14)

For the fuzzy linear interpolating function of the data points (x1, ỹ1) and(x2, ỹ2), see Figure
4 . The basis functionsφ1(x) andφ2(x) are given by

φ1(x) :=
x2 − x

x2 − x1

(15)

and
φ2(x) :=

x − x1

x2 − x1

, (16)

and depend only on the crisp location of the sampling points.For the graphs of the functions
φ1(x) andφ2(x) see Figure 1 and Figure 2, respectively.

Figure 4: Fuzzy linear interpolating function.

The graph of the resulted fuzzy interpolating function is tobe seen in Figure 4 .

4.1.2 Case 2: Interpolating data with crisp quantities at fuzzy locations.

Interpolating sample values of some analytical fuzzy function or of some empirically mea-
sured fuzzy data with crisp quantitiesyi at fuzzy locations̃xi with i = 1, ..., n can be realized
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by the general interpolating functioñf : R̃ → R̃ and is given as

f̃(x̃) =

n∑

i=1

yi · φ̃i(x̃) . (17)

The basis functions̃φi : R̃ → R̃ with i = 0, ..., n are fuzzy functions.
The fuzzy interpolating function in Eq. 17 fulfills the requirements on the sought fuzzy

interpolating function stated in problem 4.1. But the subject of interest of interpolation methods
is normally interpolating unknown quantities at an exactlyknown positions. Therefore, for the
practical application of a fuzzy interpolation method the fuzzy function in Eq. 17 can take the

form f̃ : R → R̃ and is given as

f̃(x) =

n∑

i=1

yi · φ̃i(x) , (18)

and the associated basis functions are hence fuzzy functions of the formφ̃i : R → R̃ still
depending on the fuzzy locations̃xi of the sampling points.

It is important to mention that this interpolating functiondoes not ensure the reproduction of
the sampling quantities exactly at the sampling position. However, it is a special case of the Eq.
17 and therefore it still fulfills the first requirement of theproblem 4.1. The general form of Eq.
17 will be revisited in the next two cases, especially in the case of morphing fuzzy numbers.

For the fuzzy linear interpolating functioñf of (x̃1, y1) and(x̃2, y2), see Figure 7, the fuzzy
basis functions̃φ1(x) andφ̃2(x) are given by Eq. 19 and Eq 20, respectively.

Figure 5: Basis functioñφ1 .

Figure 6: Basis functioñφ2 .

φ̃1(x) :=
x̃2 − x

x̃2 − x̃1
(19)

φ̃2(x) :=
x − x̃1

x̃2 − x̃1

(20)
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Figure 7: Fuzzy linear interpolating function.

Figure 5 and Figure 6 show the graph of the fuzzy basis functions φ̃1(x) andφ̃2(x), respec-
tively. Figure 7 shows the graph of the resulted linear fuzzyinterpolating function.

4.1.3 Case 3: Interpolating data with fuzzy quantities at fuzzy locations.

Interpolating data with fuzzy quantities̃yi at fuzzy locations̃xi with i = 1, ..., n can be done,

as in the previous case, by the general interpolating function f̃ : R̃ → R̃ given as

f̃(x̃) =

n∑

i=1

ỹi · φ̃i(x̃) . (21)

with the basis functions of the form̃φi : R̃ → R̃ with i = 0, ..., n.
As in the previous case this interpolating function fullfilsthe requirements stated in problem

4.1. However, a special case of the fuzzy function in Eq. 21 will be used. This special fucntion

takes the form̃f : R → R̃ and is given as

f̃(x) =
n∑

i=1

ỹi · φ̃i(x) (22)

The basis functions̃φi(x) with i = 1, ..., n, still depend on the fuzzy locations of the sampling
points, are fuzzy functions of the form of̃φi : R → R̃. Again, it is important to note that
this interpolating function in the special case does not ensure the reproduction of the sampling
quantities exactly at the sampling position. Reproducing the sampling quantities is a subject of
the next case.

The linear interpolating functioñf of (x̃1, ỹ1) and(x̃2, ỹ2), see Figure 8, is constructed using
the fuzzy basis functions̃φ1(x) and φ̃2(x) given in Eq. 23 and Eq. 24, respectively. For the
graphs of the basis functions see Figure 5 and Figure 6 .

φ̃1(x) :=
x̃2 − x

x̃2 − x̃1
(23)

φ̃2(x) :=
x − x̃1

x̃2 − x̃1
(24)

See Figure 8 for the graph of this function.
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Figure 8: Fuzzy linear interpolating function.

4.1.4 Case 4: The general case and morphing fuzzy numbers

In case 2 and case 3 the general fuzzy interpolating functions in Eq. 17 and Eq. 21 were
avoided for practical reasons and substituted by the special fuzzy functions in Eq. 18 and Eq.
22 , respectively.

Generally speaking the fuzzy variablẽx in Eq. 17 and Eq. 21 can take values with unre-
stricted fuzziness iñRm. Despite the fact that this is mathematically justified, it does not prove
any practical use. A fuzzy morphing space offers a reasonable restriction of the domain of the
variablex̃ . One can use a fuzzy morphing function

x̃ : R̃
m × R̃

m × R → R̃
m (25)

which restrict the domain of̃x to a subset of̃Rm . The interpolating fuzzy function then takes
the form of Eq. 17 or Eq. 21 and fulfills the requirements of problem 4.1 in reproducing the
sampling quantities exactly at the sampling points.

4.2 Fuzziness induced by deficiency of information

Interpolation methods are used to construct idealized realvalued continuous functions from
distributed data. Due to the in reality inevitably point wise discrete and imprecise observations
of the quantity in interest, constructing real valued continuous functions is not adequate to
represent the complete information on the observed data. Moreover, the fact that the sampling
points are scattered and discrete, causes a reduction of theactual continuous function. This will
necessarily introduce some kind of uncertainty caused by the deficiency of information.

The set of data that makes a specific interpolating function is regarded as an incomplete
information item. Interpolation methods are used to get a totally unknown piece of information
from this incompletely known information item. Thus, the values of the interpolating function
are uncertain. In order to reduce this uncertainty the data set can be interpolated using a fuzzy
interpolating function.

In this section the problem 4.1 is at first extended by an extrarequirement to give the problem
of interpolating data under information deficiency. Next aninterpolating function for quanti-
fying the fuzziness induced by the deficiency of informationis suggested. Then two cases are
discussed. The first case is interpolating data with crisp quantities at crisp locations. The second
case is interpolating data with fuzzy quantities at crisp locations.

Problem 4.2 (Interpolating data under information deficiency) Let x̃1, · · · , x̃n ben fuzzy points
in R̃

m. A fuzzy number̃yi in R̃ is associated to each̃xi with i = 1, · · · , n. The pairs

(x̃i, ỹi) ∈ R̃
m × R̃ are pairwise unique. Constructing an interpolating function f̃ : R̃

m → R̃

mappingR̃
m to R̃ such that:
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1. f̃(x̃i) = ỹi for all i = 1, · · · , n ,

2. f̃ : R̃
m → R̃ is a continuous function,

3. andf̃(x̃) quantifies the fuzziness induced by the distributed and discrete state of the data
set

is the problem to be sovled.

4.2.1 Quantification of fuzziness

Quantifying the fuzziness induced by the discrete and distributed state of the sampling points
will be demonstrated first. Letx1 andx2 be two pieces of information, each representing a
specific location on thex axis, see Figure 9. Considering the region betweenx1 andx2 as
unknown, we could linearly interpolate the unknown location x (x1 ≤ x ≤ x2) in a trivial way.

Figure 9: Coordinate interpolation.

The interpolating function is given as

x =
2∑

i=1

xi · φi(x) , (26)

whereφi(x) are linear basis functions similar to those given in the lastsection in Eq. 10 and
Eq. 11 forφ1(x) andφ2(x), respectively.

Nevertheless, having onlyx1, x2 and the interpolation method as an information item to
describe the whole interval[x1, x2] makes this information incomplete and induces an amount
of uncertainty.

Quantifying the fuzziness here can be done by describing theinterpolation position using a
fuzzy function of the form

x̃(x) : R → R̃ : x̃ = {(ξ, µ(ξ))|ξ ∈ R, µ(ξ) ∈ [x1, x2] → [0, 1]} (27)

This function maps the coordinatex of the interpolation position to a fuzzy numberx̃ that
quantifies the fuzziness. The membership functionµ(ξ) is given in a quasi-LR-representation,
see Figure 10. That means the function is divided into a left function and a right function and
given as

µ(ξ) =





L( x−ξ

x−x1

) for x1 ≤ ξ < x

1 for ξ = x

R( ξ−x

x2−x
) for x < ξ ≤ x2

(28)

The left functionL is given as

L(ξ̄) := (1 − ξ̄)αL(1 − φL) + φL ; αL :=
1 − φL

φL

; ξ̄ =
x − ξ

x − x1
(29)
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Figure 10: Quasi-LR-representation of a fuzzy number.

and the right functionR is given as

R(ξ̄) := (1 − ξ̄)αR(1 − φR) + φR ; αR :=
1 − φR

φR

; ξ̄ =
ξ − x

x2 − x
(30)

The values ofφL andφR are given by the basis functionsφ1 andφ2, respectively.
Using the suggested quantification of the fuzziness in the coordinatex betweenx1 = 0 and

x2 = 1 gives the fuzzy numbers shown in Figure 11 atx = 0.0 ,x = 0.25 ,x = 0.5 ,x = 0.75
andx = 1.0.

Figure 11: The interpolated fuzzy numbers atx = 0.0 ,x = 0.25 ,x = 0.5 ,x = 0.75 andx = 1.0 from left to right
respectively.

The choice of the method to interpolate specific data is a subjective decision and depends
on the expert opinion on which interpolating function best suits the interpolated data set. Addi-
tional information might be prescribed, such as the slope atgiven points, the data density and
other characteristics of the data set.

The membership function of the constructed fuzzy number canbe modified by a Characteristic-
Density Factor. This factor expresses the information content of the association between the
characteristics of the data set under study and the density of the data. This association is es-
sential, because having only the density of the data does notjustify the attempt to modify the
membership function. Only in connection with the characteristic of the data set is this attempt
plausible.

The Characteristic-Density Factor influences the quantification of the fuzziness. This in-
fluence can be demonstrated in decreasing or increasing the precision without affecting the
uncertainty about the modified information value. This effect can be done by using a fuzzy
modification operator on the fuzzy number representing the fuzzy value. In Eq. 31 the fuzzy
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modification operatormod is applied on the membership functionµ(ξ) of a fuzzy number

mod[µ(ξ)] = µc(ξ) , (31)

wherec is the Characteristic-Density factor.
This Characteristic-Density factorc could be given as

c = density|grad z(x,y)| , (32)

in case the gradient of the interpolated function is a-priori known or can be obtained. A sug-
gested density function is given as

density =
n∑

i=1

Di(p) , (33)

where
Di(p) = e−distance(p,pi)2 (34)

andpi are the sampling points of the data set.
Describing the interpolation position x as a fuzzy numberx̃ quantifies the fuzziness induced

by the deficiency of information and passes it over to the interpolating function and hence
increases the certainty about the interpolated value. Thisexploits all the used information con-
tent explicitly, which is otherwise represented only implicitly in the interpolating function. This
procedure must be slightly modified in accordance with the applied interpolation method. How-
ever, the basic idea suggested here is generally valid.The one dimensional linear interpolation
is again considered in the next sections as an introductory example to simplify matters and to
demonstrate the way of finding the fuzzy function that fulfills the third requirement.

4.2.2 Case 1: Interpolating data with crisp quantities at crisp locations

The fuzzy interpolating function of the form̃f : R → R̃, given as

f̃(x) =

n∑

i=1

yi · φ̃i(x) (35)

with the fuzzy basis functions of the form̃φi : R → R̃, given as

φ̃i(x) = φ̃i(x̃(x)) (36)

can be used to interpolate data with crisp quantitiesyi at crisp locationsxi with i = 1, ..., n . The
fuzzy basis functions̃φi(x) depend on a fuzzy functioñx(x), given in Eq. 27, that maps every
x to a fuzzy number. This fuzzy number quantifies the fuzziness and reduces the uncertainty.

The fuzzy linear interpolation of the data points(x1, y1) and(x2, y2), see Figure..., can be
done using the fuzzy basis functions̃φ1 andφ̃2 given in Eq. 37 and Eq. 38, respectively.

φ̃1(x) :=
x2 − x̃(x)

x2 − x1
(37)

φ̃2(x) :=
x̃(x) − x1

x2 − x1

(38)
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Figure 12: Basis functioñφ1 .

Figure 13: Basis functioñφ2 .

Figure 14: Fuzzy linear interpolation of crisp data.

The functionx̃(x) is given in Eq. 27 and the membership function of the resultedfuzzy
number is given in Eq. 28 . The graphs ofφ̃1 and φ̃2 are shown in Figure 12 and Figure 13,
respectively. The graph of the resulted fuzzy interpolating function is showen in Figure 14 .

The Characteristic-Density Factor can be used to modify theresulting fuzzy number to con-
sider the density of the used data set and the characteristics of the studied region.

4.2.3 Case 2: Interpolating data with fuzzy quantities at crisp locations

Introducing the fuzziness induced by the information deficiency while interpolating data with

fuzzy quantities at crisp locations can be done using the fuzzy interpolating functioñf : R → R̃

given as

f̃(x) =
n∑

i=1

f̃i(xi) · φ̃i(x̃(x)) (39)

The fuzzy basis functions̃φi : R → R̃ are given as

φ̃i(x) = φ̃i(x̃(x)) (40)

These fuzzy basis functions̃φi depend again on the fuzzy functioñx(x) given in Eq. 27.
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The fuzzy linear interpolation of the data points(x1, ỹ1) and(x2, ỹ2), see Figure 15, can be
done using the fuzzy basis functions

φ̃1(x) :=
x2 − x̃(x)

x2 − x1
(41)

φ̃2(x) :=
x̃(x) − x1

x2 − x1
(42)

For the graphs of these basis function see Figure 1 and Figure2.

Figure 15: Fuzzy linear interpolation of fuzzy data.

The graph of the resulted fuzzy interpolating function is shown in Figure 15.

5 SHORT EXCURSION IN INTERPOLATION METHODS

In this section interpolation using different well-kown methods is considered. At first, sample
points of the continuous analytical fuzzy function

f̃(x) = ã · sin x (43)

are interpolated by a Lagrange interpolant. After this, theinterpolation of sample points of the
same function in Eq. 43 is conducted by a piecewise linear interpolating function considering
the fuzziness induced by the discrete and distributed stateof the sample points. Original mea-
sured data are next interpolated by a piecewise bilinear interpolating function on a grid. The
quantification of the fuzziness induced by the deficiency of information is regarded here, too.
At last the Shepard interpolation method is used to interpolate sample points of the function in
Eq. 43 again.

A graph of the function in Eq. 43 in the interval[0, 2π] for the constant

ã = {(ξ, µ(ξ))|ξ ∈ R, µ(ξ) ∈ R → [0, 1]}, (44)

where

µea(ξ) =





ξ−0.7
0.3

for 0.7 ≤ ξ ≤ 1.0
1.3−ξ

0.3
for 1.0 ≤ ξ ≤ 1.3

0 otherwise,

(45)

is shown in Figure 16.
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Figure 16: Fuzzy sine function.

5.1 Fuzzy Lagrange polynomial interpolation

Taking the constant̃a as given in Eq. 44 sample points of the function in Eq. 43 are taken at
x = 0, x = π

2
, x = π, x = 3π

2
andx = 2π, see the left side of Figure 17.

Figure 17: Fuzzy Lagrange polynomial interpolation of fuzzy sine function.

A fuzzy interpolating function of these sample points can bebuilt using the Lagrange funda-
mental polynomials as basis functionφi in

f̃(x) =
n∑

i=1

ỹi · φi(x) (46)

The fundamental polynomials are given as

φi(x) :=

n∏

j=1

j 6=i

x − xj

xi − xj

(47)

For the graph of the fuzzy Lagrange polynomial interpolating function see the right side of
Figure 17.

5.2 Fuzzy piecewise linear interpolation

Here for the fuzzy piecewise linear interpolation two different instances of the continuous
analytical fuzzy function in Eq. 43 are considered. The firstinstance is given for the single tone
fuzzy number

ã = {(ξ, µ(ξ))|ξ ∈ R, µ(ξ) ∈ R → [0, 1]}, (48)
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where

µea(ξ) =

{
1 for ξ = 1.0

0 otherwise,
(49)

and hencẽa is a crip real number. This makes the fuzzy function a crisp real valued one. The
graph of this crisp real function is shown in Figure 18.

Figure 18: Crisp sine function.

Interpolating some sample points of this crisp real function using a classical piecewise lin-
ear interpolating function, see Figure 19, does not necessarily represent the original function
accurately especially in the case of the total ignorance of the original function underlaying the
sample points.

Figure 19: Crisp piecewise linear interpolation of a crisp sine function.

Here taking sample points atx = 0, x = π
2
, x = π, x = 3π

2
andx = 2π again, see the left

side of Figure 20, the fuzziness induced by the information deficiency is quantified and a fuzzy
interpolating function for these sample points is constructed. The used basis functionsφ̃i(x̃(x))

andφ̃i+1(x̃(x)) to build the interpolating function between two sample points i andi + 1

f̃(x) = yi · φ̃i(x̃(x)) + yi+1 · φ̃i+1(x̃(x)) (50)

are given as in the following.

φ̃i(x) :=
xi+1 − x̃(x)

xi+1 − xi

(51)

φ̃i+1(x) :=
x̃(x) − xi

xi+1 − xi

(52)

The functioñx(x) is given in Eq. 27. For the graph of the interpolating function see Figure 20.
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Figure 20: Fuzzy piecewise linear interpolation of a crisp sine function.

This interpolating function reduces the uncertainty in theresulted interpolation of the orig-
inal function and reserves the whole information content. Refining the distance between the
sample points increases the certainty in the interpolatingfunction to a maximum level under the
information available, see Figure 21 and Figure 22

Figure 21: Fuzzy piecewise linear interpolation of a crisp sine function.

Figure 22: Fuzzy piecewise linear interpolation of a crisp sine function.

The second instance of the function in Eq. 43, which is considered here, is the same function
as before resulted from̃a given by Eq. 44. A fuzzy piecewise linear interpolating function,
which takes only the genuine fuzziness into account, is usedto interpolate sample points at
x = 0, x = π

2
, x = π, x = 3π

2
i andx = 2π. The fuzzy interpolating function between two

sampling pointsi andi + 1 is given as

f̃(x) = ỹi · φi(x) + ỹi+1 · φi+1(x) (53)

The basis functionsφi(x) andφi+1(x) are given as in the following.

φi(x) :=
xi+1 − x

xi+1 − xi

(54)
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φi+1(x) :=
x − xi

xi+1 − xi

(55)

A graph of the interpolating function is shown in Figure 23

Figure 23: Fuzzy piecewise linear interpolation of a fuzzy sine function.

Quantifying the fuzziness induced by the deficiency of information and interpolating the
same sample points using fuzzy interpolating function of the form

f̃(x) = ỹi · φ̃i(x̃(x)) + ỹi+1 · φ̃i+1(x̃(x)) (56)

reduces the uncertainty as before to a minimum with respect to the available information. The
basis functions are given as in the following.

φ̃i(x) :=
xi+1 − x̃(x)

xi+1 − xi

(57)

φ̃i+1(x) :=
x̃(x) − xi

xi+1 − xi

(58)

The functionx̃(x) is given as before in Eq. 27. A graph of the interpolating function in Eq. 56

Figure 24: Fuzzy linear interpolating function.

is shown in Figure 24.
Again, with the refinement of the distance between the sampling points the interpolating

function tends to be more certain and keeps the uncertainty at a minimum level, see Figure 25
and Figure 26.
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Figure 25: Fuzzy linear interpolating function.

Figure 26: Fuzzy linear interpolating function.

5.3 Fuzzy piecewise bilinear interpolation on a grid

A two dimensional original bathymetric data set that coversthe offshore area of the island
of Langeoog off the German coast of the North Sea is interpolated here by a fuzzy piecewise
bilinear interpolating function. The data set consists of aregular grid of 5 m distance and were
resulting from fan echo sonar data over the year 2002. This data set is supplied by the Lower
Saxony Water Management, Coastal Defence and Nature Conservation Agency (NLWKN) after
treatment and processing which increases the uncertainty.

The fuzzy piecewise bilinear interpolating function between the points(i, j), (i+1, j), (i, j+
1) and(i + 1, j + 1) is given as in the following.

f̃(x, y) = z̃ij · φ̃ij(x, y)+ z̃i+1j · φ̃i+1j(x, y)+ z̃ij+1 · φ̃ij+1(x, y)+ z̃i+1j+1 · φ̃i+1j+1(x, y) (59)

The basis functions are given as in the following.

φ̃ij(x, y) :=
(yj+1 − ỹ(y)) · (xi+1 − x̃(x))

(xi+1 − xi) · (yj+1 − yj)
(60)

φ̃i+1j(x, y) :=
(ỹ(y) − yj+1) · (x̃(x) − xi)

(xi+1 − xi) · (yj+1 − yj)
(61)

φ̃ij+1(x, y) :=
(ỹ(y) − yj) · (xi+1 − x̃(x))

(xi+1 − xi) · (yj+1 − yj)
(62)

φ̃i+1j+1(x, y) :=
(yj+1 − ỹ(y)) · (x̃(x) − xi)

(xi+1 − xi) · (yj+1 − yj)
(63)
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The functions̃x(x) and ỹ(y) are given as in Eq. 27. These basis functions and the resulting
fuzzy bilinear interpolating function interpolate the genuine fuzziness in the data and quantify
the fuzziness induced by the deficiency of information.

Figure 27: From left to right the minimum and maximum of the interpolated depth distribution in Spring 2002 at
0.0 degree of membership.

Figure 28: From left to right the minimum and maximum of the spatially interpolated depth distribution in Spring
2002 at0.5 degree of membership.

Figure 29: The spatially interpolated depth distribution in Spring 2002 at1.0 degree of membership.
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Figures 27, 28 and 29 show the fuzzy interpolation of the depth in the Spring of the year
2002. In Figure 27 on the left side the minimum of the depth distribution at theα-Cut level of
(0.0) is presented. The right picture shows the maximum of the depth distribution at theα-Cut
level of (0.0). In Figure 28 on the left side the minimum of the depth distribution at theα-Cut
level of (0.5) is presented. The right picture shows the maximum of the depth distribution at the
α-Cut level of (0.5). Figure 29 shows the depth distribution at theα-Cut level of (1.0).

5.4 Fuzzy Shepard interpolation

At last if the basis functionsφi with i = 1, ..., n of a fuzzy interpolating function

f̃(x) =

n∑

i=1

ỹi · φi(x) (64)

are defined depending on the distancedist(x, xi) betweenx andxi and a smoothing parameter
η, 0 < η < ∞ as

φ(x) :=
ϕ

η
i (x)∑n

i=1 ϕ
η
i (x)

, (65)

whereϕi(x) = 1
dist(x,xi)

, the resulting interpolating function is a fuzzy Shepard interpolating
function.

Figure 30: Shepard interpolation of a fuzzy fine function with η = 2.

Figure 31: Shepard interpolation of a fuzzy fine function with η = 2.

If interpolating the sample points of the fuzzy function given in Eq. 43 taken atx = 0,
x = π

2
, x = π, x = 3π

2
i andx = 2π, see the left side of Figure 30, using the basis functions in

Eq. 65 withη = 2, the function shown in Figure 30 results. Refining the distance between the
sample points results in the interpolating function shown in Figure 31.
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6 CONCLUSION

Uncertainties and fuzziness in scattered and discrete observations can be accounted for by
fuzzy interpolating functions in a cohernt and closed form maintaining the informational content
of the data set. In this paper the integration of the different uncertainties and fuzziness into a
fuzzy valued function was discussed. Sets of artificial and original measured data were used
to examine different fuzzy interpolation methods. The application of such fuzzy interpolation
methods to interpolating bathymetric data might prove helpful in the case of the volumetric
apporoach to calculating the sedimentation and erosion rates.
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