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Abstract. Fuzzy functions are suitable to deal with uncertainties fuzdiness in a closed form
maintaining the informational content. This paper triesuttderstand, elaborate, and explain
the problem of interpolating crisp and fuzzy data using oardus fuzzy valued functions. Two
main issues are addressed here. The first covers how theészziinduced by the reduction
and deficit of information i.e. the discontinuity of the npelated points, can be evaluated
considering the used interpolation method and the densitgeodata. The second issue deals
with the need to differentiate between impreciseness amcetfezziness only in the interpolated
guantity, impreciseness only in the location of the intéapexd points and impreciseness in both
the quantity and the location.

In this paper, a brief background of the concept of fuzzy remhland of fuzzy functions
is presented. The numerical side of computing with fuzzybewsris concisely demonstrated.
The problem of fuzzy polynomial interpolation, the intégtion on meshes and mesh free fuzzy
interpolation is investigated. The integration of the poassly noted uncertainty into a coherent
fuzzy valued function is discussed. Several sets of atifiod original measured data are used
to examine the mentioned fuzzy interpolations.



1 INTRODUCTION

Interpolation methods are used to construct idealizedvadakd continuous functions from
distributed data. Due to the in reality inevitably point /discrete and imprecise observations
of the quantity in interest, constructing real valued cmmntius functions is not adequate to
represent the complete information on the observed data.fddt, that the interpolated data
points are scattered and discrete, causes a reduction attile continuous function. This will
necessarily introduce some kind of uncertainty and fuzsmmaused by the information deficit.
In the case of inaccurate measurements this fuzzinessusgent is thus necessary to consider
this uncertainty and fuzziness in order to get an interpajdunction, that incorporates all the
available information.

Fuzzy functions are suitable to deal with the mentioned uac#ies and fuzziness in a
closed form maintaining the informational content. Two mgisues must be addressed. The
first covers how the fuzziness, induced by the reduction afididncy of information i.e. the
discontinuity of the interpolated points, can be evaluatedsidering the used interpolation
method and the density of the data. The second issue dehlthwiheed to differentiate between
impreciseness and hence fuzziness only in the interpotptadtity, impreciseness only in the
location of the interpolated points and impreciseness th tiee quantity and the location.

In the next section a brief background of the concept of fumzsnbers and of fuzzy func-
tions is presented. After that in sectian 3 the numerica sidcomputing with fuzzy numbers
is concisely demonstrated. The integration of the preWonsted uncertainty into a coher-
ent fuzzy valued function is discussed in secfibn 4. In safl sets of artificial and original
measured data are used to examine the fuzzy Lagrange pabfriotarpolation, the mesh free
fuzzy Shepard interpolation, the fuzzy piecewise linegenpolation and the fuzzy piecewise
bilinear interpolation on a grid.

2 FUZZY NUMBERS AND FUZZY FUNCTIONS

A fuzzy numberz is a special case of a fuzzy set with specific requirementa@member-
ship functionu(z). A definition of the fuzzy number is given as follows.

Definition 2.1 (Fuzzy Number) A fuzzy numbet is a fuzzy set with the membership function
u(x) : R — [0, 1] that is piecewise continuous such that:

1. For every paira; and ay in [0, 1], whenevery; < ay thenR O A, 2 A,,, with
Ay, = {r € R: pu(z) > a;} thea-Cut set. This means, the fuzzy set is convex.

2. sup pu(x) = 1. This means, the fuzzy set is normal.
zeR

3. There is exactly one € R with (z) = 1.

The set of all fuzzy numbers @ is denoted byR and called the fuzzy space. A crisp real
numberz € R is regarded as a single tone set

{(& ()€ € R, pu(§) € R — [0, 1]}, 1)
where
1 foré=z
He) = {0 otherwise, @)
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which is a fuzzy number. Therefore, the set of crisp real nensik can be seen as a subset of
R (R C R). N
Now the definition of a fuzzy functiori can be given as follows.

Definition 2.2 (Fuzzy Function) A fuzzy function is a relationship between two subesd
Y of the fuzzy spadg that associats each elemenof the first subsek with only one element
of the second sét. f(7) is used to refer to the associated elemgnrt f(%) of the second set
Y and is called the “fuzzy image af. This relationship is written as

f@: X Y 5=f7) . (3)
A classical real functiorf : R — R is a special case of the fuzzy one, in which the domain and
the range of the function are subsets of the fuzzy sfaagth only single tone fuzzy numbers.

Defining the fuzzy function in an arithmetic sense is accashgeld by the extension principle
of Zadeh, which is the subject of the next section.

3 COMPUTING WITH FUZZY NUMBERS

The extension principle, as proposed by Zadeh, is the basicept providing a method to
extend the arithmetic notion of real functions to fuzzy fimies. This allows the definition of
mathematical operations on fuzzy numbers in a similar wan &se real numbers space. The
extension principle is stated as in the following.

Proposition 3.1 (The Extension Principle of ZADEH) Let X; x X, x ... x X,,, whereX; C R
withi = 1,2, ..., n, be a product set andl a functional mapping of the form

fZX1XX2X...><Xn—>Y, (4)

which associates each elemént, x, ..., x,,) of the product set to one element f (x4, xo, ..., ,,)
of the sett” C R. Now, letz,, 7, ..., x,, ben fuzzy numbers, defined as

7o = {2, 1z, (22)) |2 € X; C R, iz, (i) « X; — [0,1]} )

withi = 1,2, ...,n . Then the fuzzy number

y=f(@1,%9 ., T0) = {(y,15(¥)ly €Y CR, pz(y) : Y — [0, 1]} (6)

is the fuzzy image @f;, %2, ..., T, ) resulting from extending the real functional mappintp a
fuzzy functional mapping and has the membership functipg(y) defined by

sup HliIl{Mfl(xl)a,uig(ﬂfQ), 7M5n<xn)} if Jy = f(x17x2,...,£€n)
M?J(y) - y=F(z1,22,..., ZTn) | (7)
! otherwise.

Evaluating the extension principle is a subject of a long @irdrsifying discussion, which
will be omitted here in favour of being concise. For more miation about the basics of fuzzy
set theory and the arithmetic of fuzzy numbers the referefiijeand [2] are recommended.



4 FUZZY INTERPOLATION

Fuzzy interpolation methods can be understood as procedarenterpolating data with
genuine fuzziness as well as procedures for interpolatiisp @end fuzzy data quantifying the
fuzziness induced by information deficiency. In other woitiss distinguished between two
situations. The first situation is the interpolation of fyzata, in which the fuzziness is a non
separable part of the sampling points. The second situatithre fuzzy interpolation of either
crisp or fuzzy data quantifying the fuzziness induced byrétiction of the actual state of the
interpolated analytical or empirical function.

Considering a set of crisp data, such that at various paintisere is a crisp informatiog;
with i = 1,--- ,n, the interpolation of such discrete crisp data in terms GHtineely simple
functions is well-grounded. The interpolation methodsduses generally based on the simple
form of an interpolating function

FR-R:fx) =) v dilx) 8)
i=1
where the basis functiop;(x) : R — R satisfies the interpolation condition:
1 fork=1
i = 9
éile) {0 fork #i ®)

A very simple example can be given in fitting a linear functiotwo data point$z,, y; ) and
(x2,12), See Figurél3, which are sample values of some function,ervetraluated analytically
or measured empirically.

Figure 1: Basis functiogp; .

¢2(;()
1 /
‘ . »

>
X X2

X

Figure 2: Basis functiog, .

The basis functions that build the desired linear functien a

To — X

P1(x) = (10)

Lo — T1




and -
ho() = -, (11)
To — X1
see Figuréll and Figuré 2, and the graph of the linear intatipglfunction is shown in Figure

:
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Figure 3: Linear interpolating function.

A general and systematic view of the interpolation methbds guantify the fuzziness in-
duced by interpolating discrete and distributed data amércmterpolating data with genuine
fuzziness is required.

4.1 Genuine fuzziness in the data

Here, the interpolation problem of fuzzy data in the geneask is stated first. Then three
essential special cases are discussed and demonstragefirsThase is interpolating data with
fuzzy quantities at a crisp locations. The second caseasgalating data with crisp quantities
at fuzzy locations. The third case is interpolating daténtizzy quantities and fuzzy locations.
At last the general case of interpolating fuzzy data is dised.

Problem 4.1 (The problem of interpolating data with genuinefuzziness) Letzy, - - - , 7, be
n fuzzy points irR™. A fuzzy numbey; in R is associated to each; withi = 1,---,n.
The pairs(z;,7;) € R™ x R are pairwise unique. Constructing an interpolating fuocti

7 : R™ — R mappingR™ to R such that:
1. andf(i;) = g; foralli = 1,--- | n,
2. ? : R™ — R is a continuous function.

is the problem to be sovled.

In a similar way as in interpolating crisp data the soughtftiom can then take the form

iR R @) =) G- 6il@) . (12)
=1
where theggi : R™ — R with i = 1,---,n are fuzzy functions that satisfy the interpolation
condition
~ 1 for k=1
i(Tr) = 13
¢ilT) {0 for k#£1 (13)
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Different ways of defininggi(i) give different interpolation methods, which will be exam-
ined later on. To simplify matters the one dimensional lmagerpolation is considered as an
introductory example in the next four cases. ~

The generalization of problein 4.1 to cover interpolatingchions of the formf : R™ — R
mappingR™ to R! is straight forward. The fuzzy numb@r is replaced with a fuzzy point in
R,

4.1.1 Case 1: Interpolating data with fuzzy quantities at cisp locations.

In the case of interpolating data with fuzzy quantitjeat crisp locations; withi =1, ..., n,
which are sample values of some analytical fuzzy functioof@ome fuzzy empirically mea-
sured data, the basis functiops: R — R with i = 0, ..., n can take the form of real functions
as special cases of the fuzzy functions.

The interpolating functiorf : R — Ris given in a general form as
@) =) 0 ¢ilx) . (14)
=1

For the fuzzy linear interpolating function of the data gsifx;, ;) and(x2, »), See Figure
4. The basis functiong, (x) and¢.(x) are given by

bilw) = (15)
and v
bofw) = -, (16)

and depend only on the crisp location of the sampling poiRts.the graphs of the functions
¢1(z) andgy(z) see Figuréll and Figukeé 2, respectively.
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Figure 4: Fuzzy linear interpolating function.

The graph of the resulted fuzzy interpolating function iéoseen in Figuriel 4 .

4.1.2 Case 2: Interpolating data with crisp quantities at fiezy locations.

Interpolating sample values of some analytical fuzzy fiomcor of some empirically mea-
sured fuzzy data with crisp quantitigsat fuzzy locationsr; with ¢ = 1, ..., n can be realized



by the general interpolating functioh: R — R and is given as
@ = Z Yi- %z(?f) : 17)
i=1

The basis functionéfl- R — R with i = 0,...,n are fuzzy functions.

The fuzzy interpolating function in Eq._IL7 fulfills the regaiments on the sought fuzzy
interpolating function stated in problém#.1. But the sabg interest of interpolation methods
is normally interpolating unknown quantities at an exaktipwn positions. Therefore, for the
practical application of a fuzzy interpolation method thedy function in Eq[17 can take the

form 7 : R — R and is given as
T@) = v dilo) (18)
i=1

and the associated basis functions are hence fuzzy fusctibthe formg; : R — R still
depending on the fuzzy locatioms of the sampling points.

It is important to mention that this interpolating functidaes not ensure the reproduction of
the sampling quantities exactly at the sampling positioowelver, it is a special case of the Eq.
[17 and therefore it still fulfills the first requirement of thebleni4.1. The general form of Eq.
[17 will be revisited in the next two cases, especially in thgecof morphing fuzzy numbers.

For the fuzzy linear interpolating functiohof (71, 1) and(Zs, ), see Figurél7, the fuzzy
basis functions); (x) and,(z) are given by Eq._ 19 and Eq20, respectively.

Figure 5: Basis functior%l .
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Figure 6: Basis functioébfg .
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¢(z) = PR (19)
%@:zgig (20)
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Figure 7: Fuzzy linear interpolating function.

Figurel5 and Figurel6 show the graph of the fuzzy basis funsﬁf@(x) andgg(x), respec-
tively. Figurel T shows the graph of the resulted linear funtgrpolating function.

4.1.3 Case 3: Interpolating data with fuzzy quantities at fazzy locations.

Interpolating data with fuzzy quantiti@sat fuzzy locationg; with: = 1, ..., n can be done,
as in the previous case, by the general interpolating fangti: R—R given as

F@ =Y 0@ - (21)

with the basis functions of the form : R — Rwithi = 0, ..., n.
As in the previous case this interpolating function fullthe requirements stated in problem
[4.1. However, a special case of the fuzzy function in[Ed. Allbeiused. This special fucntion

takes the forny : R — R and is given as
Fla) = b dil) (22)
=1

The basis functioné}(:c) with i = 1, ..., n, still depend on the fuzzy locations of the sampling
points, are fuzzy functions of the form éi 'R — R. Again, it is important to note that
this interpolating function in the special case does nouenthe reproduction of the sampling
guantities exactly at the sampling position. Reprodudmgdampling quantities is a subject of
the next case. ~

The linear interpolating functiofi of (z,,%,) and (-, 7, ), see Figur&l8, is constructed using
the fuzzy basis function%l(x) and%z(:c) given in Eq.[2B and Eq._24, respectively. For the
graphs of the basis functions see Fidure 5 and Figure 6 .

52—1‘

d(2) = = (23)
Bae) = 22 (24)

See Figur&l8 for the graph of this function.
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Figure 8: Fuzzy linear interpolating function.

4.1.4 Case 4: The general case and morphing fuzzy numbers

In case 2 and case 3 the general fuzzy interpolating furgtiofcq. (17 and Egl_21 were
avoided for practical reasons and substituted by the dpfeizizy functions in Eq[ 118 and Eq.
, respectively.

Generally speaking the fuzzy variablein Eq. [17 and Eq[_21 can take values with unre-
stricted fuzziness iiR™. Despite the fact that this is mathematically justified,aed not prove
any practical use. A fuzzy morphing space offers a reasenalistriction of the domain of the
variablez . One can use a fuzzy morphing function

Z:R"xR" xR — R™ (25)

which restrict the domain of to a subset oR™ . The interpolating fuzzy function then takes
the form of Eq.[II7 or Eq[_21 and fulfills the requirements offgen[4.1 in reproducing the
sampling quantities exactly at the sampling points.

4.2 Fuzziness induced by deficiency of information

Interpolation methods are used to construct idealizedvedakd continuous functions from
distributed data. Due to the in reality inevitably point ediscrete and imprecise observations
of the quantity in interest, constructing real valued amndius functions is not adequate to
represent the complete information on the observed dataedxer, the fact that the sampling
points are scattered and discrete, causes a reduction atilnel continuous function. This will
necessarily introduce some kind of uncertainty caused &ydficiency of information.

The set of data that makes a specific interpolating functsoregarded as an incomplete
information item. Interpolation methods are used to getaljounknown piece of information
from this incompletely known information item. Thus, thdues of the interpolating function
are uncertain. In order to reduce this uncertainty the dattaan be interpolated using a fuzzy
interpolating function.

In this section the problem 4.1 is at first extended by an egtyairement to give the problem
of interpolating data under information deficiency. Nextiai@rpolating function for quanti-
fying the fuzziness induced by the deficiency of informati®suggested. Then two cases are
discussed. The first case is interpolating data with crigmtjties at crisp locations. The second
case is interpolating data with fuzzy quantities at crig@atmns.

Problem 4.2 (Interpolating data under information deficiency) Letzy,--- ,z, ben fuzzy points
in R™. A fuzzy numbeg, in R is associated to eacly; with i = 1,--- ,n. The pairs
(i, 7:) € R™ x R are pairwise unique. Constructing an interpolating fuoctif R™ — R
mappingR™ to R such that:



1. f(z;) =g foralli=1,--- ,n,
2. f:R™ — Ris a continuous function,

3. and?(f) quantifies the fuzziness induced by the distributed andedesstate of the data
set

is the problem to be sovled.

4.2.1 Quantification of fuzziness

Quantifying the fuzziness induced by the discrete anditigied state of the sampling points
will be demonstrated first. Let; andz, be two pieces of information, each representing a
specific location on the: axis, see Figurgl9. Considering the region betwegland z, as
unknown, we could linearly interpolate the unknown locatio(z; < x < x,) in a trivial way.

1 1 1 -
T T T Ll

xl X x2 IR

Figure 9: Coordinate interpolation.

The interpolating function is given as

T = ZSCZ i) (26)

where¢;(z) are linear basis functions similar to those given in the $astion in Eq[_10 and
Eq.[11 forg, (x) andgy(x), respectively.

Nevertheless, having only;, x5 and the interpolation method as an information item to
describe the whole intervat, , xo] makes this information incomplete and induces an amount
of uncertainty.

Quantifying the fuzziness here can be done by describinghtlepolation position using a
fuzzy function of the form

F(x) :R—R:7 = {(&u(©))|E € R, ul€) € [x1,25] — [0,1]} 27)

This function maps the coordinateof the interpolation position to a fuzzy numberthat
quantifies the fuzziness. The membership funcfi¢f) is given in a quasi-LR-representation,
see Figuré¢ 10. That means the function is divided into a leftfion and a right function and
given as

L(EL) for oy < &<z

r—x1

pé =41 for ¢=u (28)
R(fz__xx) for x <& <y
The left functionL is given as
) . c\ar _ . ._1_¢L. e I—f
L(£> - (1 - g) (1 (bL) + (bL ;= d)L ) £ - T — 1 (29)
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Figure 10: Quasi-LR-representation of a fuzzy number.

and the right functiorr is given as

(1 =& (1— ¢r) + ¢r ; OéRizl_(bR D €= Sl

Or To— T

R(¢) (30)

The values ofy;, and¢y are given by the basis functions and¢,, respectively.

Using the suggested quantification of the fuzziness in tloedioatex betweenr; = 0 and
x9 = 1 gives the fuzzy numbers shown in Figlré 1krat 0.0 .2 = 0.25 ,x = 0.5 ,2 = 0.75
andz = 1.0.

Figure 11: The interpolated fuzzy numbersat 0.0 ,x = 0.25 .z = 0.5 ,# = 0.75 andz = 1.0 from left to right
respectively.

The choice of the method to interpolate specific data is aestibg decision and depends
on the expert opinion on which interpolating function bestssthe interpolated data set. Addi-
tional information might be prescribed, such as the sloggven points, the data density and
other characteristics of the data set.

The membership function of the constructed fuzzy numbebeanodified by a Characteristic-
Density Factor. This factor expresses the information eanof the association between the
characteristics of the data set under study and the derfsihealata. This association is es-
sential, because having only the density of the data doegisiify the attempt to modify the
membership function. Only in connection with the charasterof the data set is this attempt
plausible.

The Characteristic-Density Factor influences the quaatiba of the fuzziness. This in-
fluence can be demonstrated in decreasing or increasingréeesipn without affecting the
uncertainty about the modified information value. This eiffean be done by using a fuzzy
modification operator on the fuzzy number representing tlzeyf value. In Eq[31 the fuzzy
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modification operatomod is applied on the membership functipf¥) of a fuzzy number

mod[p(§)] = u(§) (31)

wherec is the Characteristic-Density factor.
This Characteristic-Density factercould be given as

¢ = densitylIrad =@yl (32)

in case the gradient of the interpolated function is a-pkoown or can be obtained. A sug-
gested density function is given as

density = Z D;(p) , (33)

i=1

where ‘
Di (p) — e—clzstance(p,pi)2 (34)

andp; are the sampling points of the data set.

Describing the interpolation position x as a fuzzy numbeguantifies the fuzziness induced
by the deficiency of information and passes it over to therpaiating function and hence
increases the certainty about the interpolated value. &tpboits all the used information con-
tent explicitly, which is otherwise represented only ingily in the interpolating function. This
procedure must be slightly modified in accordance with th@iag interpolation method. How-
ever, the basic idea suggested here is generally valid.méaimensional linear interpolation
is again considered in the next sections as an introduct@aymple to simplify matters and to
demonstrate the way of finding the fuzzy function that fidfthe third requirement.

4.2.2 Case 1: Interpolating data with crisp quantities at crsp locations

The fuzzy interpolating function of the for%: R — R, given as
@) =Y v dilx) (35)
i=1

with the fuzzy basis functions of the fon}f; 'R — R, given as
6i(w) = &i(T()) (36)

can be used to interpolate data with crisp quantifjes crisp locations; withi = 1,...,n . The
fuzzy basis functions,(x) depend on a fuzzy functiafi(x), given in Eq.[2V, that maps every
x to a fuzzy number. This fuzzy number quantifies the fuzaraes reduces the uncertainty.

The fuzzy linear interpolation of the data points, y;) and(x2, y»), see Figure..., can be
done using the fuzzy basis functionsande, given in Eq[3Y and E._38, respectively.

hilw) = 20 37)
(@) = % (38)
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Figure 14: Fuzzy linear interpolation of crisp data.

The functionz(z) is given in Eq.[2F and the membership function of the resuitedy
number is given in Eq[_28 . The graphs®f and ¢, are shown in Figure 12 and Figurel 13,

respectively. The graph of the resulted fuzzy interpotafimction is showen in Figuie 114 .
The Characteristic-Density Factor can be used to modifyakelting fuzzy number to con-

sider the density of the used data set and the charactsrigtibe studied region.

4.2.3 Case 2: Interpolating data with fuzzy quantities at cisp locations

Introducing the fuzziness induced by the information deficy while interpolating data with

fuzzy quantities at crisp locations can be done using theyfirterpolating functiorf : R — R
given as

J@) =3 Fiw) - du(i(a) (39)
The fuzzy basis function%i 'R — Rare given as
6i(w) = &i(T()) (40)

These fuzzy basis functions depend again on the fuzzy functiaie) given in EqL2V.
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The fuzzy linear interpolation of the data poiitts, y;) and(zs, y2), see Figuré 15, can be
done using the fuzzy basis functions

o — T(x)

$1(z) = T (41)
bo(r) = DT (42)

For the graphs of these basis function see Figlre 1 and Fjure

- A - o
5 | I o
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y | 7‘.
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\4
v
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Figure 15: Fuzzy linear interpolation of fuzzy data.

The graph of the resulted fuzzy interpolating function iewh in Figure_15.

5 SHORT EXCURSION IN INTERPOLATION METHODS

In this section interpolation using different well-kown theds is considered. At first, sample
points of the continuous analytical fuzzy function

f(z) =a-sinz (43)

are interpolated by a Lagrange interpolant. After this,itherpolation of sample points of the
same function in Eq._43 is conducted by a piecewise linearpalating function considering
the fuzziness induced by the discrete and distributed sfdtee sample points. Original mea-
sured data are next interpolated by a piecewise bilinearpotating function on a grid. The
guantification of the fuzziness induced by the deficiencynédrimation is regarded here, too.
At last the Shepard interpolation method is used to intageadample points of the function in

Eq.[43 again.
A graph of the function in E4._43 in the intenval 2| for the constant
a={(& n@&)EeR,u) eR—[0,1]}, (44)
where o
o for0.7<€<1.0
pa(€) = q 255 forl.0<¢<13 (45)
0 otherwise,

is shown in Figuré_16.
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Figure 16: Fuzzy sine function.

5.1 Fuzzy Lagrange polynomial interpolation

Taking the constant as given in Eq._44 sample points of the function in EJ. 43 atertat
r=0,2=2%,z=m =32 andz = 27, see the left side of Figufe7.

o

Figure 17: Fuzzy Lagrange polynomial interpolation of fysine function.

A fuzzy interpolating function of these sample points cafb#t using the Lagrange funda-
mental polynomials as basis functignin

flx) = b dilx) (46)
i=1
The fundamental polynomials are given as
- Xr — SL’]'
; = 47
¢i(w) Hx_x (47)
J#i

For the graph of the fuzzy Lagrange polynomial interpolatinnction see the right side of
Figure[17.

5.2 Fuzzy piecewise linear interpolation

Here for the fuzzy piecewise linear interpolation two diffiet instances of the continuous
analytical fuzzy function in Eq._43 are considered. The firstance is given for the single tone
fuzzy number

a={( n@)E e R, n§) e R—1[0,1]}, (48)
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where

0 otherwise,

f =1.
Ma(f)Z{l oré =10 (49)

and hence is a crip real number. This makes the fuzzy function a crigth valued one. The
graph of this crisp real function is shown in Figlre 18.

Figure 18: Crisp sine function.

Interpolating some sample points of this crisp real functiging a classical piecewise lin-
ear interpolating function, see Figurel 19, does not nedgssepresent the original function
accurately especially in the case of the total ignorancé®btiginal function underlaying the
sample points.

Figure 19: Crisp piecewise linear interpolation of a crisggunction.

Here taking sample points at= 0, z = Z, z = m, 2 = 2% andz = 27 again, see the left
side of Figuré_20, the fuzziness induced by the informatigiicéency is quantified and a fuzzy
interpolating function for these sample points is congadcThe used basis functiongz(z))
andg;,1(Z(z)) to build the interpolating function between two sample poirandi + 1

(@) = v ¢i(@(@)) + Yir1 - i1 (T()) (50)
are given as in the following. N
Bile) 1= L =T (51)
Tit1 — L4
5141(37) = Uz) ~ (52)
Tit1 — T4

The functionz () is given in EQ[2I7. For the graph of the interpolating functsee Figuré 20.
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Figure 20: Fuzzy piecewise linear interpolation of a crisye $unction.

This interpolating function reduces the uncertainty intégulted interpolation of the orig-
inal function and reserves the whole information contengfiftng the distance between the
sample points increases the certainty in the interpoldtingtion to a maximum level under the
information available, see Figurel21 and Figurk 22

Figure 21: Fuzzy piecewise linear interpolation of a crisg $unction.

Figure 22: Fuzzy piecewise linear interpolation of a crisy $unction.

The second instance of the function in Eql 43, which is carsid here, is the same function
as before resulted from given by Eq.[44. A fuzzy piecewise linear interpolating ftiog,
which takes only the genuine fuzziness into account, is tsadterpolate sample points at
r=0,2=2z=ma=2iandz = 2r. The fuzzy interpolating function between two
sampling pointg and: + 1 is given as

@) = i~ ¢i(2) + Giyr - dia () (53)
The basis functions;(x) and¢; . ;(x) are given as in the following.
dif) 1= (54)
Tit1 — T4
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r — T

Gir1(w) = m (55)

A graph of the interpolating function is shown in Figlre 23

Figure 23: Fuzzy piecewise linear interpolation of a fuzimggunction.

Quantifying the fuzziness induced by the deficiency of infation and interpolating the
same sample points using fuzzy interpolating function efftirm

F(x) = G- 0i(@(2)) + Jir - 0 (F(2)) (56)

reduces the uncertainty as before to a minimum with respetiet available information. The
basis functions are given as in the following.

Liy1 — %(l‘)

di(z) = pa— (57)
Cgiﬂ(ll?) = % (58)

The functionz () is given as before in EQ.27. A graph of the interpolating fiorcin Eq.[56

Figure 24: Fuzzy linear interpolating function.

is shown in Figur€ 24.

Again, with the refinement of the distance between the saigpoints the interpolating
function tends to be more certain and keeps the uncertairtyranimum level, see Figute P5
and Figuré 26.
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Figure 25: Fuzzy linear interpolating function.

Figure 26: Fuzzy linear interpolating function.

5.3 Fuzzy piecewise bilinear interpolation on a grid

A two dimensional original bathymetric data set that covbesoffshore area of the island
of Langeoog off the German coast of the North Sea is intetpdlbere by a fuzzy piecewise
bilinear interpolating function. The data set consists cégular grid of 5 m distance and were
resulting from fan echo sonar data over the year 2002. Thes skt is supplied by the Lower

Saxony Water Management, Coastal Defence and Nature GatiserAgency (NLWKN) after
treatment and processing which increases the uncertainty.
The fuzzy piecewise bilinear interpolating function beénéehe pointsi, j), (i+1, j), (¢, j+
1)and(i + 1,5 + 1) is given as in the following.

f(z,y)

The basis functions are given as in the following.

= e Wint = J(Y) - (T — F(2))

Gij(z,y) (ziv1 — ) - (Yj01 — Yj)

(Y(y) — yj1) - (@(x) — 25)
(@it1 — @)+ (Yj41 — Y5)

;Z;z‘ﬂj (z,y) =

(y(y) — ?/j) (w41 — 2(2))
(Tiv1 — i) - (Yjr1 — Y5)

Gy (w,y) =

Wi —y(y)) - (2(z) — )

égz‘+1 ‘+1($>?/) =
’ (i1 — ) - (Yje1 — ¥))
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= Zij 0ij(x,y) + Zit1s - Piv1 (2, Y) + Zijr1 - Gijur (2, Y) + Zigaj41 - Pivrj41 (2, y) (59)

(60)

(61)

(62)

(63)



The functionsz(z) andy(y) are given as in EqL_27. These basis functions and the regultin
fuzzy bilinear interpolating function interpolate the gare fuzziness in the data and quantify
the fuzziness induced by the deficiency of information.

okm Tk
———|

Figure 27: From left to right the minimum and maximum of theenpolated depth distribution in Spring 2002 at
0.0 degree of membership.

Figure 28: From left to right the minimum and maximum of thatsgly interpolated depth distribution in Spring
2002 at0.5 degree of membership.

Figure 29: The spatially interpolated depth distributinrspring 2002 at.0 degree of membership.
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Figured 2[ 28 and 29 show the fuzzy interpolation of the lda@pthe Spring of the year
2002. In Figuré 217 on the left side the minimum of the deptlridigtion at thea-Cut level of
(0.0) is presented. The right picture shows the maximum of theérd@istribution at thev-Cut
level of (0.0). In Figure28 on the left side the minimum of the depth disttion at then-Cut
level of (0.5) is presented. The right picture shows the maximum of thédaigtribution at the
a-Cut level of (0.5). Figure 29 shows the depth distribution at th€ut level of (1.0).

5.4 Fuzzy Shepard interpolation

At last if the basis functions; with i = 1, ..., n of a fuzzy interpolating function
fx) = b dilx) (64)
i=1

are defined depending on the distardce (x, z;) betweenr andx; and a smoothing parameter
7,0 <n<ooas

i (z)
o(r) = = (65)
SR > e
wherep;(z) = W the resulting interpolating function is a fuzzy Shepartipolating

function.

Figure 30: Shepard interpolation of a fuzzy fine functiornwit= 2.

0.0+

Figure 31: Shepard interpolation of a fuzzy fine functiorhwit= 2.

If interpolating the sample points of the fuzzy function givin Eq.[48 taken at = 0,
rT=35,r="T,1 = 37’% andz = 27, see the left side of Figufe 30, using the basis functions in

Eq.[65 withn = 2, the function shown in Figufe B0 results. Refining the distametween the
sample points results in the interpolating function showRigure 31.
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6 CONCLUSION

Uncertainties and fuzziness in scattered and discretenadigms can be accounted for by
fuzzy interpolating functions in a cohernt and closed foraimtaining the informational content
of the data set. In this paper the integration of the diffetercertainties and fuzziness into a
fuzzy valued function was discussed. Sets of artificial angirmal measured data were used
to examine different fuzzy interpolation methods. The agpion of such fuzzy interpolation
methods to interpolating bathymetric data might prove fuélim the case of the volumetric
apporoach to calculating the sedimentation and erosies.rat
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