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Abstract

The  solution  of  advection-dominated  equations  with  the  method  of  finite  elements  led  to  the

development of stabilization techniques. In this paper we present that the generalized formulation of

stabilized  finite  elements  on the  basis  of  a  Galerkin/least-squares  approximation [2],  [4]  can be

transferred to finite element method based on arbitrary convex polyhedron [3]. A condition for this is

the formulation in natural element coordinates. The choice of suitable stabilization parameters is often

application-dependent  and  difficult.  A  general  rule  for  computing  suitable  element  stabilization

parameters is outlined which uses the spectral radius of the differential operators and the element

expansion.
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1. Introduction

Many phenomena in physics and technology relate to transport phenomena and the reaction of states

and substances. Such physical and technical questions can often be represented with stationary or

transient partial differential equations. The approximation of transport dominant problems with the

method of finite differences or the method of finite elements frequently leads to instabilities of the

approximated solution.  To overcome most  of  the limitations in  the  Galerkin method by solving

transport dominant problems,  the stabilized finite element method based on a combination of the

Galerkin and least-squares approach [2]. The choice of suitable stabilization parameters is difficult

and often application-dependent. The generalized finite elements on the basis of convex polyhedrons

make a higher flexibility possible with the generation of decompositions and simplify completely

substantially adaptive refinements. If we would use these new elements to solve transport dominated



problems a suitable stabilization is necessary.

2. Finite Elements on Convex Polyhedrons

A generalised finite element FE  can be understood as a triple consisting of a geometrical basis GE  ,

a set of degrees of freedom   and a set of interpolation functions   [1]:

),,(:  GEFE

The complete description of complex problems will be realised with a set of simple interpolation

functions with unknown parameters for sub regions (finite elements) of an element decomposition.

The solution of  a  differential  equation can be  approximated  with  the  solution of  corresponding

algebraic system of equations. A degree of freedom is normally composed of a point (element of the

geometrical basis), an interpolation function and a value. The corresponding interpolation function is

described by natural element coordinates of the geometrical basis and  the value of one is assigned to

the corresponding degree of freedom.

2.1. Natural Element Coordinates

The formulation of a local coordinate system permits a uniform element formulation in the method of

the finite elements. The description of the convex polyhedron Z by the Minkowsky product

Z :={p: p=1e
12e

2N e
N ,i0∧∑

i

i=1} (1)

of its vertices E suggests to use the factors i  of the linear combination as element coordinates. If an

m-dimensional convex polyhedron has m+1 linear independent vertices, the factors are unique and

called barycentric coordinates. If a convex polyhedron consists of more than m+1 vertices, the factors

are not unique. If the natural neighborhood coordinates introduced by Sibson [6] are restricted to the

convex polyhedron, one receives unique natural element coordinates, which are related to the vertices

of  the  convex  polyhedron.  The  determination  of  the  natural  element  coordinates  of  a  point  x

concerning the convex polyhedron Z is based on the computation of the Voronoi diagram of second

order concerning the vertices and the point x.



Figure 1: Voronoi decomposition of the convex polyhedron using sub-regions

Firstly, the Voronoi decomposition of first order of a convex polyhedron is determined by its vertices

ei . Each vertex of the convex polyhedron has its own Voronoi region. The Voronoi region of a vertex

ei  is the set of all points p which has a smaller or equal distance to the vertex ei  as their distance to

the remaining vertices e j :

VR ei:={ p∈ℝn :d  p ,ei≤d  p ,e j∀ j≠i } . (2)

The Voronoi region of second order of a convex polyhedron is determined concerning its vertices ei

and a point x of the convex polyhedron. A Voronoi region of second order is the set of points p, whose

distance to the point x is smaller or equal their distance to a vertex ei , if its distance to this vertex is

smaller or equal their distance to the remaining vertices e j :

VR x ,ei:={ p∈ℝn :d  p , x ≤d  p ,ei≤d  p ,e j ∀ j≠i } . (3)

The natural element coordinates of the point  x concerning the vertex  ei  are determined over the

Voronoi regions of second order (see Figure 1). Each Voronoi region of first or second order assigns

itself  a Lebesgue measure   VR ei  or   VR x ,ei  .  This measure corresponds to the common

surface area in the 2-dimensional Euclidean space. The ratio between the measure of the Voronoi

region of second order of a vertex and the point x to measure of the Voronoi regions of first order of

the point  x concerning all vertices of the convex polyhedron is called the unique natural element

coordinates

i  x ,ei  :=
 VR  x ,ei  
 VR  x  

. (4)



3. Stabilized Finite Element Approximation

3.1. The Transport Problem

The following general transient problem shall be viewed. Let Ω represent the open bounded domain in

ℝn and Γ its boundary. Find a vector function U :ℝm such that

∂U
∂ t
LUS=0 (5)

is valid, where L is a quasi-linear differential operator and S are source and sink terms. We assume that

all  necessary  boundary  and initial  conditions  which  guarantee  the  existence  of  the  solution  are

available. 

The quasi-linear operator has the following form:

L≡Ai
∂
∂ x i
− ∂
∂ x i
K ij

∂
∂ x j

 (6)

Here Ai is the ith Euler Jacobian matrix and Kij is the diffusivity matrix. Therefore, the operator L can

be understood as sum of an advection operator Ladv and a diffusion operator Ldiff:

L=LadvLdiff (7)

each operator can be divided again into its local components with the following representation. As this

can be shown for the transport operator:

L=∑ Li=∑ Ai
∂
∂ x i (8)

In order to approximate the equation (5) with the finite element method the domain Ω is discretized

into nel finite elements Ωe.

3.2. Stabilized Finite Element Approximation

The derivation of the stabilized finite element approximation is carried out via the combination of a

standard Galerkin approximation and the least squares approximation. This can be described roughly,

for the differential equation (5) as follows:

∫

U , tLUS ⋅w d∑

e=1

nel

e∫
e

L⋅w  U , tLUS de=0 (9)

The first integral contains the Galerkin approximation and the second term contains the least-squares

stabilization which is composed of the sum of integrals over the element interiors. This approximation



is called semi-discrete GLS method. We use the following modified semi-discrete SUPG method,

which is a predecessor to the GLS method.

∫

U , tLUS ⋅w d∑

e=1

nel

e∫
e

Ladv⋅w  U , t
GLUS de=0 (10)

where U , t
G is  determined by the standard Galerkin-method. The difference to the GLS is that rather

than having L operating on the weighting space, only its advective part, Ladv, acts there.

The element stabilization parameter τe plays an important role for the stability and consistency of the

approximation. 

3.3. Stabilization Parameter

On the basis of the determination of an optimal stability parameter in the one-dimensional case the

following formulation for multidimensional vector valued transport problem results

e :=opt
1
2

he
Ladv

. (11)

with  Ladv  is the spectral radius of the quasi-linear transport operator. The determination of the

element expansion he is represented in Figure 2.

Figure 2: Computation of the element size

The optimality parameter αopt is evaluated in the same way as in the one-dimensional case

opt :=coth Pe −
1
Pe

, (12)

but the element Peclet  number now depends on the spectral radii  of the advection and diffusion

differential operator

Pe :=
Ladv⋅he
Ldiff 

. (13)

h
e



The differential operator has the form presented in (6) 

L=∑ Li=∑ Ai
∂
∂ x i

then the spectral radius of the operator is

L:=∑ Li
2 (14)

where the spectral radius of the operator component is calculated by

Li:=∣max Ai∣ (15)

with max Ai   the absolutely largest eigenvalue of the Matrix Ai.

This definition is consistent in all dimensions, starting by the one dimensional scalar valued advective

diffusive problem up to more dimensional and vector valued problems.

4. Numerical Examples

The approximation of the instantaneous simplified shallow water equation in a rectangular basin is

used as a test case.

∂U i

∂ t
= −U j

∂U i

∂ x j

− g
∂
∂ x i
 1
d

T i − T i
B 

∂
∂ t

= −
∂U j d

∂ x j

(16)

where  is the mean water level U i  representing the depth integrated velocities in x- and y-direction,

d is the mean water depth.

The rectangular basin have a steadily water inflow in the upper left corner and moves into the lower

right corner. Obviously, this finite element decomposition does not consist of triangles or quadrangles,

but it  is a decomposition of any convex polygonal cells.  The decomposition was generated by a

Voronoi decomposition and consist of 2455 convex polygonal cells with different numbers of edges

and 5067 degrees of freedom.

The Figure 3 shows the results of the stabilized finite element simulation after 8 and 150 minutes. The

typical structure of a whirl appeared at the inflow side oft the basin and moved to the right side (150

minutes) to build a quasi stationary whirl. The perspective is from above.



Figure 3: Finite element decomposition and current velocities field after 8 minutes and after 150 minutes

The developing flow has a smooth structure. With the presented implementation of a generalized

finite element approximation comparison with different decompositions can be investigated.

5. Conclusion

A stabilized finite element procedure on the basis of a Galerkin / least-squares approximation for

arbitrary  convex polyhedrons was  presented.  A general  rule  is  indicated  for  computing  suitable

element stabilization parameters using the spectral radius of the differential operators and the element

expansion.  A  numerical  example  from  fluid  mechanics  has  shown  that  the  new  formulation

successfully improves the stability. 
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